Ejemplo n.º 1
0
def isTruncPrime(n):
    s = str(n)
    pre = ['1', '9']
    if s[0] in pre or s[-1] in pre:
        return False
    for i in range(1, len(s)):
        if not isPrime(int(s[:i])) or not isPrime(int(s[i:])):
            return False
    return True
Ejemplo n.º 2
0
def isCircularPrime(n):
    if '5' in str(n):
        return False

    if not isPrime(n):
        return False

    nums = Rotation(str(n))
    for n in nums[1:]:
        if not isPrime(int(n)):
            return False
    return True
Ejemplo n.º 3
0
def run(n):
    t = 2
    arr = []
    while not common.isPrime(n):
        if t == 2 and n % t != 0:
            t += 1
        elif n % t != 0:
            t += 2
            if not common.isPrime(t):
                t += 2
        if n % t == 0:
            n //= t
            arr.append(t)
    arr.append(n)
    return max(arr)
Ejemplo n.º 4
0
def isTruncatablePrime(n, leftToRight):
	s = str(n)
	while len(s) > 0:
		if not isPrime(int(s)):
			return False
		s = s[1:] if leftToRight else s[:-1]
	return True
Ejemplo n.º 5
0
def isCircularPrime(n):
	s = str(n)
	for i in range(len(s)):
		if not isPrime(int(s)):
			return False
		s = s[1:] + s[0]
	return True
Ejemplo n.º 6
0
def prob10():
	maxNumber = 2000000
	primeList = set()
	for i in range(2,maxNumber+1):
		if isPrime(i):
			primeList.add(i)

	return sum(primeList)
Ejemplo n.º 7
0
def prob7():
	primeList = set()
	i = 2
	while len(primeList) <= 10000:
		if isPrime(i):
			primeList.add(i)
		i = i+1

	return max(primeList)
Ejemplo n.º 8
0
def prob3():
	number = 600851475143
	
	primeList = set()
	primeFactors = set()
	for i in range(2,int(ceil(sqrt(number)))+1):
		if i in primeList or isPrime(i):
			primeList.add(i)
			if number % i == 0:
				primeFactors.add(i)
	return max(primeFactors)
Ejemplo n.º 9
0
def quadratic(a, b):
    """
    If n^2 + a*n + b is a quadratic formula then return the number of prime
    it produces, else return 0
    """
    n = 1
    while True:
        fn = n * (n + a) + b
        if not isPrime(fn):
            break
        else:
            n += 1

    return n - 1
Ejemplo n.º 10
0
# The prime factors of 13195 are 5, 7, 13 and 29.
# What is the largest prime factor of the number 600851475143?

from math import sqrt
from common import isPrime

val = 600851475143
if isPrime(val):
	print(val)
	exit()
for n in range(int(sqrt(val))+1, 0, -1):
	if val % n == 0 and isPrime(n):
		print(n)
		break
Ejemplo n.º 11
0
    If n^2 + a*n + b is a quadratic formula then return the number of prime
    it produces, else return 0
    """
    n = 1
    while True:
        fn = n * (n + a) + b
        if not isPrime(fn):
            break
        else:
            n += 1

    return n - 1

if __name__ == "__main__":
    nums, product = -1, 0
    primes = [n for n in range(2, 1000) if isPrime(n)]
    # derivation of f(n)=n^2+a*n+b is f'=2*n+a, so f(n) get its minimum value when
    # n=-a/2, and f(-a/2)=b-(a^2)/4 must be greater than 2(the smallest prime)
    # when a is lesser than zero.
    # For b is up to 999,so we get 4*999-8 >= a^2, then a >= -63 when a is
    # negative, so a starts at -63
    for a in range(-63, 1000):
        # b must prime because f(n) = b (when n=0)
        for b in primes:
            if a == 0 or (a < 0 and 4 * b - a ** 2 - 8 < 0):
                continue
            tmp = quadratic(a, b)
            if nums < tmp:
                nums = tmp
                product = a * b
Ejemplo n.º 12
0
# The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
# Find the sum of all the primes below two million.

from common import isPrime

print(2 + sum([n for n in range(3, 2000000+1, 2) if isPrime(n)]))
Ejemplo n.º 13
0
    return s.find(substring)


def getAllPrimes(u):
    pdict = dict()
    allps = []
    for i in range(2, u):
        n, ps, flag = i, [], True
        while n not in pset:
            if n in pdict:
                ps += pdict[n]
                flag = False
                break
            else:
                for p in primes:
                    if not n % p:
                        ps.append(p)
                        n /= p
                        break
        if flag:
            ps.append(n)
        allps.append(ps)
        pdict[i] = ps
    return allps


primes = [i for i in range(2, 1000000) if isPrime(i)]
pset = Set(primes)
distincts = [len(Set(ps)) for ps in getAllPrimes(1000000)]
print findFirsNumber(distincts, '4444') + 2
Ejemplo n.º 14
0
#! /usr/bin/python2.7
# -*- coding: utf-8 -*-
from common import isPrime
import itertools


# sum(range(1,10)) = 45, which can be divided by 3, so 9-bit number is impossible
# so does 8-bit numbers, while 7-bit numbers might be fit
# starting from the largest 7-bit number, so it doesn't need to check the
# maximum
nums = itertools.permutations(range(7, 0, -1))
for i in nums:
    cur = int(''.join([str(item) for item in i]))
    if isPrime(cur):
        print cur
        break
Ejemplo n.º 15
0
from common import isPrime

cnt = 0
i = 1

while cnt < 10001:
    i += 1
    if isPrime(i):
        cnt += 1

print(i)
Ejemplo n.º 16
0
#! /usr/bin/python2.7
# -*- coding: utf-8 -*-
from common import isPrime


def isTruncPrime(n):
    s = str(n)
    pre = ['1', '9']
    if s[0] in pre or s[-1] in pre:
        return False
    for i in range(1, len(s)):
        if not isPrime(int(s[:i])) or not isPrime(int(s[i:])):
            return False
    return True


def isPrimeWithOdd(n):
    even = ['0', '4', '6', '8']
    for i in even:
        if i in str(n):
            return False
    return True


primes = [i for i in range(11, pow(10, 6)) if isPrime(i) and isPrimeWithOdd(i)]
if __name__ == "__main__":
    res = [p for p in primes if isTruncPrime(p)]
    print sum(res)
Ejemplo n.º 17
0
 def isPrime(n):
     if n < 0:
         return False
     elif n < len(p):
         return p[n]
     return common.isPrime(n)
Ejemplo n.º 18
0
#! /usr/bin/python2.7
# -*- coding: utf-8 -*-
from common import isPrime
from sets import Set


def isConjecture(n):
    root = 1
    while 2 * pow(root, 2) <= n - 2:
        if n - 2 * pow(root, 2) in primes:
            return True
        root += 1
    return False


primes = Set([i for i in range(2, 10000) if isPrime(i)])
odds = Set(range(3, 10000, 2))
oddcomps = odds.difference(primes)
for n in oddcomps:
    if not isConjecture(n):
        print n
        break
Ejemplo n.º 19
0
# By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
# What is the 10001st prime number?

from sys import maxsize
from common import isPrime

primesToFind = 10001
primesFound = 0
lastPrime = 0
for n in range(2, maxsize):
	if isPrime(n):
		lastPrime = n
		primesFound += 1
		if primesFound == primesToFind:
			break

print(lastPrime)
Ejemplo n.º 20
0
#! /usr/bin/python2.7
# -*- coding: utf-8 -*-
from common import isPrime


# let a, b, c be the increasing sequence, then a + c = 2 * b
# a, b, c all end with the same number like 1, 3, 7, 9
primes = [i for i in range(1000, 9999) if isPrime(i)]
pdict = dict()
pdict['1'], pdict['3'], pdict['7'], pdict['9'] = [], [], [], []
for p in primes:
    pdict[str(p)[-1]].append(p)


def findPP(arr):
    l = len(arr)
    for i in range(l):
        for j in range(i + 1, l):
            mid = (arr[i] + arr[j]) / 2
            if mid in arr and sorted(str(arr[i])) == sorted(str(mid)) == sorted(str(arr[j])):
                print str(arr[i]) + str(mid) + str(arr[j])


for k in pdict.keys():
    findPP(pdict[k])