def train(model_config, model_name):
    token = '{}_{}_{}'.format('spv-cnn', model_config, model_name)

    checkpoint_dir = tempfile.mkdtemp(prefix=token + '_', dir=config.DIR_MODEL)
    path_loss_plot = os.path.join(checkpoint_dir, 'LOSS_{}.png'.format(token))
    checkpoint_path = os.path.join(
        checkpoint_dir, 'check_gen{epoch:02d}_loss{val_loss:.2f}.hdf5')
    model_path = os.path.join(config.DIR_MODEL, 'MODEL_{}.hdf5'.format(token))
    tee = Tee(os.path.join(config.DIR_LOG, 'LOG_{}.logg'.format(token)),
              'w')  # noqa: F841

    # ## preproc
    X, Y = load_label(config.DIR_DATA)
    X = transform_channel(X, orig_mode='channels_first')

    # ## split data
    X_train, Y_train, X_valid, Y_valid = split_data(X, Y, ratio=0.9)

    X_train, Y_train = data_augmentation(X_train, Y_train)

    # ## small down dataset
    # X, Y, X_out, Y_out = split_data(X, Y, ratio=0.5)

    # standardize train data

    # orig_shape = X_train.shape
    # tmp_X_train = X_train.copy()
    # tmp_X_train.shape = (orig_shape[0], orig_shape[1]*orig_shape[2]*orig_shape[3])
    # scaler = StandardScaler().fit(tmp_X_train)
    # tmp_X_train = scaler.transform(tmp_X_train)
    # tmp_X_train.shape = orig_shape
    # X_train = tmp_X_train

    if model_config == 'vgg16':
        model = keras.applications.vgg16.VGG16(include_top=False,
                                               weights='imagenet',
                                               input_tensor=None,
                                               input_shape=(3, 32, 32))
        batch_size = 8
    else:
        func_get_custom_model = getattr(model_configs, model_config)
        model, batch_size = func_get_custom_model(10, inputs=(32, 32, 3))

    model.summary()

    model.fit(X_train,
              Y_train,
              batch_size=batch_size,
              epochs=40,
              validation_data=(X_valid, Y_valid),
              callbacks=[
                  ModelCheckpoint(checkpoint_path, monitor='val_loss'),
                  ModelCheckpoint(model_path,
                                  save_best_only=True,
                                  monitor='val_loss',
                                  mode='min'),
                  EarlyStopping(monitor='val_loss', patience=3, mode='min'),
                  PlotLosses(output_img=path_loss_plot)
              ])
def train(model_config, model_name):
    token = '{}_{}_{}'.format('st-cnn', model_config, model_name)

    checkpoint_dir = tempfile.mkdtemp(prefix=token + '_', dir=config.DIR_MODEL)
    model_path = os.path.join(config.DIR_MODEL, 'MODEL_{}.hdf5'.format(token))
    tee = Tee(os.path.join(config.DIR_LOG, 'LOG_{}.logg'.format(token)),
              'w')  # noqa: F841

    # ## preproc
    # label data preproc
    LX, LY = load_label(config.DIR_DATA)
    LX = transform_channel(LX, orig_mode='channels_first')
    LX, LY, LX_valid, LY_valid = split_data(LX, LY, ratio=0.8)
    LX_valid, LY_valid = data_augmentation(LX_valid, LY_valid)

    # unlabel data preproc
    UX = load_unlabel(config.DIR_DATA)
    UX = transform_channel(UX, orig_mode='channels_first')

    # pretrain_model
    spv_token = '{}_{}_{}'.format('spv-cnn', model_config, model_name)
    pretrain_model_path = os.path.join(config.DIR_MODEL,
                                       'MODEL_{}.hdf5'.format(spv_token))
    if os.path.exists(pretrain_model_path):
        model, batch_size = _create_model(model_config,
                                          path_restore=pretrain_model_path)
        model.summary()
    else:
        model, batch_size = _create_model(model_config)
        model.summary()
        model.fit(LX,
                  LY,
                  batch_size=batch_size,
                  epochs=5,
                  validation_data=(LX_valid, LY_valid),
                  callbacks=[
                      EarlyStopping(monitor='val_loss', patience=3,
                                    mode='min'),
                  ])

    # ## self-training
    num_self_train = 10
    num_epochs = 10
    patience = 1
    relable_score = 0.92

    path_best_checkpoint = None
    for st_round in range(1, 1 + num_self_train):
        print('\n\n----- Round {} -----\n\n'.format(st_round))
        round_token = token + '_round{}'.format(st_round)
        path_loss_plot = os.path.join(checkpoint_dir,
                                      'LOSS_{}.png'.format(round_token))
        checkpoint_path = os.path.join(
            checkpoint_dir, 'check_round{}'.format(st_round) +
            '_gen{epoch:02d}_loss{val_loss:.2f}.hdf5')

        # restore model
        if path_best_checkpoint is not None:
            model, batch_size = _create_model(
                model_config, path_restore=path_best_checkpoint)

        # add predicted unlabel data above relable_score
        X_train, Y_train = LX, LY
        ux, uy = _select_unlabeled_above_relable(UX, model, relable_score)
        if ux is not None:
            num_add_unlabeled = ux.shape[0]
            print 'add unlabeled data: ', num_add_unlabeled

            X_train = np.concatenate((X_train, ux), axis=0)
            Y_train = np.concatenate((Y_train, uy), axis=0)

        X_train, Y_train = data_augmentation(X_train, Y_train)

        model.fit(
            X_train,
            Y_train,
            batch_size=batch_size,
            epochs=num_epochs,
            validation_data=(LX_valid, LY_valid),
            callbacks=[
                ModelCheckpoint(checkpoint_path, monitor='val_loss'),
                EarlyStopping(monitor='val_loss',
                              patience=patience,
                              mode='min'),
                PlotLosses(output_img=path_loss_plot)
            ],
            verbose=1,
        )
        del model

        # select best model
        checkpoints = filter(lambda x: '_loss' in x,
                             os.listdir(checkpoint_dir))
        best_checkpoint = sorted(
            checkpoints,
            key=lambda x: float((x.split('_loss')[1]).replace('.hdf5', '')))[0]
        print 'best checkpoint right now: ', best_checkpoint
        path_best_checkpoint = os.path.join(checkpoint_dir, best_checkpoint)

    copyfile(path_best_checkpoint, model_path)
Ejemplo n.º 3
0
import pickle
import math
from shutil import copyfile
import time

from common import load_label, load_unlabel
from common import split_data
from common import transform_channel
from common import data_augmentation

from keras.models import load_model


# label data preproc
folder = os.path.join(PATH,'data')
LX,LY = load_label(folder)
LX = transform_channel(LX,orig_mode="channels_first")
LX,LY,X_valid,Y_valid = split_data(LX,LY,ratio=0.9)

# unlabel data preproc
UX = load_unlabel(folder)
UX = transform_channel(UX,orig_mode="channels_first")

# load model
from models_supervised_cnn import YCNet3

model_input = os.path.join(PATH,'model','model_cnn_gen15_loss1.07_acc67.6.hdf5')  # path or None
                                  
if os.path.isfile(model_input):   
    model,batch_size = YCNet3(10, inputs=(32,32,3), file_load_weights=model_input)
else:                             
def train(model_config, model_name):
    token = '{}_{}_{}'.format('ae-cnn', model_config, model_name)

    checkpoint_dir = tempfile.mkdtemp(prefix=token + '_', dir=config.DIR_MODEL)
    path_loss_plot = os.path.join(checkpoint_dir, 'LOSS_{}.png'.format(token))
    checkpoint_path = os.path.join(
        checkpoint_dir, 'check_gen{epoch:02d}_loss{val_loss:.2f}.hdf5')
    model_path = os.path.join(config.DIR_MODEL, 'MODEL_{}.hdf5'.format(token))
    tee = Tee(os.path.join(config.DIR_LOG, 'LOG_{}.logg'.format(token)),
              'w')  # noqa: F841

    # ## preproc
    # label data preproc
    LX, LY = load_label(config.DIR_DATA)
    LX = transform_channel(LX, orig_mode='channels_first')
    LX, LY, X_valid, Y_valid = split_data(LX, LY, ratio=0.9)

    # unlabel data preproc
    UX = load_unlabel(config.DIR_DATA)
    UX = transform_channel(UX, orig_mode='channels_first')

    func_get_aec = getattr(ae_classifier_configs, model_config)
    autoencoder_classifier = func_get_aec(10, inputs=(32, 32, 3))

    # pretrain autoencoder
    train_ae_X = np.concatenate((LX, UX), axis=0)
    train_ae_X, _ = data_augmentation(train_ae_X,
                                      np.ones((train_ae_X.shape[0], 1)))

    normal_train_ae_X = np.asarray(train_ae_X, dtype='float32') / 255.0
    normal_X_valid = np.asarray(X_valid, dtype='float32') / 255.0

    ae, batch_ae = autoencoder_classifier.get_autoencoder()
    ae.summary()
    ae.fit(
        train_ae_X,
        normal_train_ae_X,
        batch_size=batch_ae,
        epochs=5,
        validation_data=(X_valid, normal_X_valid),
        verbose=1,
    )
    # autoencoder_classifier.freeze_ae_layers()

    # train

    train_X, train_Y = data_augmentation(LX, LY)

    ae_classifier, batch_ae_classifier = autoencoder_classifier.get_ae_classifier(
    )
    ae_classifier.summary()
    ae_classifier.fit(train_X,
                      train_Y,
                      batch_size=batch_ae_classifier,
                      epochs=60,
                      validation_data=(X_valid, Y_valid),
                      verbose=1,
                      callbacks=[
                          ModelCheckpoint(checkpoint_path, monitor='val_loss'),
                          ModelCheckpoint(model_path,
                                          save_best_only=True,
                                          monitor='val_loss',
                                          mode='min'),
                          EarlyStopping(monitor='val_loss',
                                        patience=3,
                                        mode='min'),
                          PlotLosses(output_img=path_loss_plot)
                      ])