Ejemplo n.º 1
0
    df = cmn.load_parsed_results()

    def map_fn(strategy):
        return 'LB-' if strategy == 'PESS' else 'TB-'

    df = df[(df.isolationLevel != 'PL0') & (df.isolationLevel != 'PL1')]
    df['strategy'] = df['strategy'].map(map_fn) + df['isolationLevel']

    # ------ throughput
    cmn.reset_colors_and_markers()
    tp = df[(df.tag1 == 'ks') & (df.tag3 == 'tp')]
    tp = tp.sort_values('var')

    fig, ax = plt.subplots()
    for key, group in tp.groupby('strategy'):
        cmn.my_plot(group, ax, kind='line', x='var', y='value', label=key)

    ax.set_ylim((0, 15000))
    ax.margins(y=0.1)
    ax.set_ylabel(cmn.TP_LABEL)
    ax.set_xlabel('Number of keys')
    ax.set_xscale('log')
    plt.gca().invert_xaxis()
    cmn.savefig_with_separate_legend('ks_tp', ax, fig)

    # ------ latency
    cmn.reset_colors_and_markers()
    lat = df[(df.tag1 == 'ks') & (df.tag3 == 'lat')]
    lat = lat.sort_values('var')

    fig, ax = plt.subplots()
Ejemplo n.º 2
0
    def get_xlabel(typee):
        return 'Number of stateful operators' if 'SINGLE' in typee else 'Number of t-graphs'

    # -------- Throughput
    cmn.reset_colors_and_markers()
    tp = df[df.tplat == 'tp'].sort_values('var')

    i = 0
    for typee, group in tp.groupby('type'):
        fig, ax = plt.subplots()

        for strategy, grp in group.groupby('strategy'):
            cmn.my_plot(grp,
                        ax,
                        kind='line',
                        x='var',
                        y='value',
                        label=strategy)

        ax.set_ylim((0, 15000))
        ax.margins(y=0.1)
        ax.set_xticks(range(1, 6))
        ax.set_ylabel(cmn.TP_LABEL)
        ax.set_xlabel(get_xlabel(typee))

        i += 1
        cmn.savefig_with_separate_legend('topologies_' + typee.lower() + '_tp',
                                         ax, fig)

    # -------- Latency
    cmn.reset_colors_and_markers()
Ejemplo n.º 3
0
import pandas as pd
import matplotlib.pyplot as plt

# ------------ MAIN ------------
if __name__ == '__main__':
    df = cmn.load_parsed_results()

    df = df[df['tag1'] == 'scale']
    df['tplat'] = df['tag3']

    # -------- Throughput
    cmn.reset_colors_and_markers()
    tp = df[df.tplat == 'tp'].sort_values('var')

    fig, ax = plt.subplots()
    cmn.my_plot(tp, ax, kind='line', x='var', y='value', legend=False)

    ax.set_ylim((0, 15000))
    ax.margins(y=0.1)
    ax.set_ylabel(cmn.TP_LABEL)
    ax.set_xlabel('Graph parallelism')

    cmn.savefig('scalability_tp', fig)

    # -------- Latency
    cmn.reset_colors_and_markers()
    lat = df[df.tplat == 'lat'].sort_values('var')

    fig, ax = plt.subplots()
    cmn.my_plot(lat, ax, kind='line', x='var', y='value', legend=False)
Ejemplo n.º 4
0
                    accs['recovery-time-at-source']['mean']))

    data = dict(replayed=x, at_state=at_state, at_source=at_source)
    df = pd.DataFrame(data=data).sort_values('replayed')

    cmn.reset_colors_and_markers()
    fig, ax = plt.subplots()

    formatter = FuncFormatter(lambda x, pos: int(x / 1000))
    ax.yaxis.set_major_formatter(formatter)
    ax.xaxis.set_major_formatter(formatter)

    cmn.my_plot(df,
                ax,
                kind='line',
                x='replayed',
                y='at_state',
                label='stateful operator',
                yformatter=False)
    cmn.my_plot(df,
                ax,
                kind='line',
                x='replayed',
                y='at_source',
                label='open operator',
                yformatter=False)

    ax.set_ylim((0, 33000))
    ax.margins(y=0.1)
    ax.set_ylabel('Replay time [s]')
    ax.set_xlabel('Number of entries in the WAL (thousands)')
Ejemplo n.º 5
0
        pd.concat([
            pd.Series(name),
            group.lat.describe().rename(name),
        ]) for name, group in grouped)
    lat.rename(columns={lat.columns[0]: 'var', 'mean': 'value'}, inplace=True)

    #print tp
    #print lat
    #sys.exit(1)

    # ------ throughput
    cmn.reset_colors_and_markers()
    fig, ax = plt.subplots()
    #for key, group in df.groupby('percentage'):
    #    cmn.my_plot(group, ax, kind='line', x='percentage', y='tp', label=key)
    cmn.my_plot(tp, ax, kind='line', x='var', y='value')

    #ax.set_ylim((0, 80000))
    ax.set_xlim((-10, 110))
    ax.margins(y=0.1)
    ax.set_ylabel("Average throughput [Ktxn/s]")
    ax.set_xlabel('Single partition transactions percentage')
    ax.set_yscale('log')
    #plt.gca().invert_yaxis()
    ax.get_legend().remove()
    cmn.savefig('volt_tp', fig)

    # ------ latency
    cmn.reset_colors_and_markers()

    fig, ax = plt.subplots()