Ejemplo n.º 1
0
def extract_tracked_frames():
    gpu_id = 1
    ctx = mx.gpu(gpu_id)
    video_path = '../../dataset/OptFace/CompressedVideo'
    detector = Detector('../../model/faster_rcnn/mxnet-face-fr50', ctx)

    img_id_map = {}
    img_cnt = 0
    cls_cnt = 0
    for video_file in os.listdir(video_path):
        frames_dir = os.path.join('../../dataset/OptFace/tracked_frames',
                                  video_file)
        if not os.path.exists(frames_dir):
            os.mkdir(frames_dir)

        print('processing video: %s' % video_file)
        video_dir = os.path.join(video_path, video_file)
        video_capture = cv2.VideoCapture(video_dir)
        fps = video_capture.get(cv2.CAP_PROP_FPS)
        size = (int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)), \
                int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
        num_frame = 0
        tracker = sort.Sort()
        while video_capture.grab():
            flag, frame = video_capture.retrieve()
            det = detector.detect_face(frame)
            ids = tracker.update(det)
            # if ids.shape[0] > 0:
            #     print(ids)
            sticked_img, crops = Function.stick_boxes(frame, ids)

            for i in range(ids.shape[0]):
                cur_id = int(ids[i][4])
                if img_id_map.get(cur_id) is None:
                    img_id_map[cur_id] = cls_cnt
                    cls_cnt += 1
                dump_crop(frames_dir, crops[i], img_id_map[cur_id], img_cnt)
                img_cnt += 1
            """
Ejemplo n.º 2
0
    recognizer.load_train_data(train_data, label, reverse_cls_map)

    img_id_map = {}
    img_cnt = 0
    cls_cnt = 0

    video_list = [l.strip() for l in open(video_list)]
    for video_file in video_list[0:1]:

        print('processing video: %s' % video_file)
        video_dir = os.path.join(video_path, video_file)
        video_capture = cv2.VideoCapture(video_dir)
        fps = video_capture.get(cv2.CAP_PROP_FPS)
        size = (int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)), \
                int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
        num_frame = 0
        tracker = sort.Sort()
        while video_capture.grab():
            flag, frame = video_capture.retrieve()
            det = detector.detect_face(frame)
            ids = tracker.update(det)
            sticked_img, crops = Function.stick_boxes(frame, ids)
            for crop in crops:
                crop_name = recognizer.predict(crop)
                print('crop name: %s' % (crop_name))

            # sys.exit()
            cv2.imshow('a', sticked_img)
            if cv2.waitKey(5) == ord('q'):
                break