Ejemplo n.º 1
0
def subtract_time_indep_bkg(obj, B_list):
    """
    This function takes spectrum object(s) and time-independent background
    value(s) and subtracts the numbers from the appropriate spectrum. The
    time-independent background number(s) are assumed to be in the same order
    as the spectrum object(s).

    @param obj: Object from which to subtract the individual background numbers
    @type obj: C{SOM.SOM} or C{SOM.SO}
    
    @param B_list: The time-independent backgrounds to subtract from the
    individual spectra.
    @type B_list: C{list} of C{tuple}s or C{tuple}

    
    @return: Object with the time-independent backgrounds subtracted
    @rtype: C{SOM.SOM} or C{SOM.SO}
    

    @raise IndexError: The B_list object is empty
    
    @raise TypeError: The first argument is not a C{SOM} or C{SO}
    
    @raise RuntimeError: The C{SOM} and list are not the same length
    """

    if len(B_list) <= 0:
        raise IndexError("List of time-independent background cannot be empty")
    # List is correct size, go on
    else:
        pass

    # import the helper functions
    import hlr_utils

    (o_descr, l_descr) = hlr_utils.get_descr(obj, B_list)

    if o_descr == "number" or o_descr == "list":
        raise TypeError("First argument must be a SOM or a SO!")
    # Have a SOM or SO, go on
    else:
        pass

    (result, res_descr) = hlr_utils.empty_result(obj)

    result = hlr_utils.copy_som_attr(result, res_descr, obj, o_descr)

    import common_lib

    # iterate through the values
    for i in xrange(hlr_utils.get_length(obj)):
        val1 = hlr_utils.get_value(obj, i, o_descr, "all")
        val2 = hlr_utils.get_value(B_list, i, l_descr, "all")
        value = common_lib.sub_ncerr(val1, val2)

        hlr_utils.result_insert(result, res_descr, value, None, "all")

    return result
Ejemplo n.º 2
0
def calibrate_dgs_data(datalist, conf, dkcur, **kwargs):
    """
    This function combines Steps 3 through 6 in Section 2.1.1 of the data
    reduction process for Direct Geometry Spectrometers as specified by the
    document at 
    U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The
    function takes a list of file names, a L{hlr_utils.Configure} object and
    processes the data accordingly.
    
    @param datalist: A list containing the filenames of the data to be
                     processed.
    @type datalist: C{list} of C{string}s
    
    @param conf: Object that contains the current setup of the driver.
    @type conf: L{hlr_utils.Configure}

    @param dkcur: The object containing the TOF dark current data.
    @type dkcur: C{SOM.SOM}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword inst_geom_dst: File object that contains instrument geometry
                            information.
    @type inst_geom_dst: C{DST.GeomDST}

    @keyword tib_const: A time-independent background constant to subtract
                        from every pixel.
    @type tib_const: L{hlr_utils.DrParameter}
    
    @keyword dataset_type: The practical name of the dataset being processed.
                           The default value is I{data}.
    @type dataset_type: C{string}

    @keyword cwp: A list of chopper phase corrections in units of microseconds.
    @type cwp: C{list} of C{float}s
    
    @keyword timer: Timing object so the function can perform timing estimates.
    @type timer: C{sns_timer.DiffTime}


    @return: Object that has undergone all requested processing steps
    @rtype: C{SOM.SOM}
    """
    import common_lib
    import dr_lib
    import hlr_utils

    # Check keywords
    try:
        tib_const = kwargs["tib_const"]
    except KeyError:
        tib_const = None
    
    try:
        dataset_type = kwargs["dataset_type"]
    except KeyError:
        dataset_type = "data"

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        i_geom_dst = kwargs["inst_geom_dst"]
    except KeyError:
        i_geom_dst = None

    dataset_cwp = kwargs.get("cwp")

    # Open the appropriate datafiles
    if conf.verbose:
        print "Reading %s file" % dataset_type

    data_paths = conf.data_paths.toPath()
    if conf.no_mon_norm:
        mon_paths = None
    else:
        mon_paths = conf.usmon_path.toPath()

    # Check for mask file since normalization drive doesn't understand option
    try:
        mask_file = conf.mask_file
    except AttributeError:
        mask_file = None

    if t is not None:
        oldtime = t.getOldTime()

    (dp_som0, dm_som0) = dr_lib.add_files_dm(datalist, Data_Paths=data_paths,
                                             Mon_Paths=mon_paths,
                                             SO_Axis=conf.so_axis,
                                             Signal_ROI=conf.roi_file,
                                             Signal_MASK=mask_file,
                                             dataset_type=dataset_type,
                                             dataset_cwp=dataset_cwp,
                                             Verbose=conf.verbose, Timer=t)

    if t is not None:
        t.setOldTime(oldtime)
        t.getTime(msg="After reading %s file" % dataset_type)

    # Cut the spectra if necessary
    dp_somA = dr_lib.cut_spectra(dp_som0, conf.tof_cut_min, conf.tof_cut_max)

    del dp_som0

    dp_somB = dr_lib.fix_bin_contents(dp_somA)

    del dp_somA

    if dp_somB.attr_list.instrument.get_name() != "CNCS":

        if conf.verbose:
            print "Cutting spectrum at minimum TOF"
        
        if t is not None:
            t.getTime(False)

        # Calculate minimum TOF for physical neutrons
        if conf.initial_energy is not None:
            initial_wavelength = common_lib.energy_to_wavelength(\
            conf.initial_energy.toValErrTuple())
            initial_velocity = common_lib.wavelength_to_velocity(\
            initial_wavelength)
        else:
            # This should actually calculate it, but don't have a way right now
            pass

        if conf.time_zero_offset is not None:
            time_zero_offset = conf.time_zero_offset.toValErrTuple()
        else:
            # This should actually calculate it, but don't have a way right now
            time_zero_offset = (0.0, 0.0)

        ss_length = dp_somB.attr_list.instrument.get_primary()
        
        tof_min = (ss_length[0] / initial_velocity[0]) + time_zero_offset[0]

        # Cut all spectra a the minimum TOF
        dp_som1 = dr_lib.cut_spectra(dp_somB, tof_min, None)

        if t is not None:
            t.getTime(msg="After cutting spectrum at minimum TOF ")
    else:
        dp_som1 = dp_somB

    del dp_somB

    if dm_som0 is not None:
        dm_som1 = dr_lib.fix_bin_contents(dm_som0)
    else:
        dm_som1 = dm_som0

    del dm_som0    

    # Override geometry if necessary
    if conf.inst_geom is not None:
        i_geom_dst.setGeometry(data_paths, dp_som1)

    if conf.inst_geom is not None and dm_som1 is not None:
        i_geom_dst.setGeometry(mon_paths, dm_som1)
    
    # Step 3: Integrate the upstream monitor
    if dm_som1 is not None:
        if conf.verbose:
            print "Integrating upstream monitor spectrum"

        if t is not None:
            t.getTime(False)
        
        if conf.mon_int_range is None:
            start_val = float("inf")
            end_val = float("inf")
        else:
            start_val = conf.mon_int_range[0]
            end_val = conf.mon_int_range[1]
        
        dm_som2 = dr_lib.integrate_spectra(dm_som1, start=start_val,
                                           end=end_val,
                                           width=True)
        if t is not None:
            t.getTime(msg="After integrating upstream monitor spectrum ")
    else:
        dm_som2 = dm_som1

    del dm_som1

    tib_norm_const = None
    
    # Step 4: Divide data set by summed monitor spectrum
    if dm_som2 is not None:
        if conf.verbose:
            print "Normalizing %s by monitor sum" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som2 = common_lib.div_ncerr(dp_som1, dm_som2, length_one_som=True)

        tib_norm_const = dm_som2[0].y

        if t is not None:
            t.getTime(msg="After normalizing %s by monitor sum" % dataset_type)

    elif conf.pc_norm:
        if conf.verbose:
            print "Normalizing %s by proton charge" % dataset_type

        pc_tag = dataset_type+"-proton_charge"
        pc = dp_som1.attr_list[pc_tag]

        # Scale the proton charge and then set the scale PC back to attributes
        if conf.scale_pc is not None:
            if conf.verbose:
                print "Scaling %s proton charge" % dataset_type

            pc = hlr_utils.scale_proton_charge(pc, conf.scale_pc)
            dp_som1.attr_list[pc_tag] = pc

        tib_norm_const = pc.getValue()

        if t is not None:
            t.getTime(False)

        dp_som2 = common_lib.div_ncerr(dp_som1, (pc.getValue(), 0.0))

        if t is not None:
            t.getTime(msg="After normalizing %s by proton charge" \
                      % dataset_type)

    else:
        dp_som2 = dp_som1

    del dp_som1, dm_som2

    # Step 5: Scale dark current by data set measurement time
    if dkcur is not None:
        if conf.verbose:
            print "Scaling dark current by %s acquisition time" % dataset_type

        if t is not None:
            t.getTime(False)

        dstime_tag = dataset_type+"-duration"
        dstime = dp_som2.attr_list[dstime_tag]

        dkcur1 = common_lib.div_ncerr(dkcur, (dstime.getValue(), 0.0))

        if t is not None:
            t.getTime(msg="After scaling dark current by %s acquisition time" \
                      % dataset_type)        
    else:
        dkcur1 = dkcur

    del dkcur

    # Step 6: Subtract scaled dark current from data set
    if dkcur1 is not None:
        if conf.verbose:
            print "Subtracting %s by scaled dark current" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, dkcur1)

        if t is not None:
            t.getTime(msg="After subtracting %s by scaled dark current" \
                      % dataset_type)
    elif tib_const is not None and dkcur1 is None:
        if conf.verbose:
            print "Subtracting TIB constant from %s" % dataset_type

        # Normalize the TIB constant by dividing by the current normalization
        # the duration (if necessary) and the conversion from seconds to
        # microseconds
        tib_c = tib_const.toValErrTuple()

        conv_sec_to_usec = 1.0e-6

        if tib_norm_const is None:
            tib_norm_const = 1
            duration = 1
        else:
            duration_tag = dataset_type+"-duration"
            duration = dp_som2.attr_list[duration_tag].getValue()

        norm_const = (duration * conv_sec_to_usec) / tib_norm_const

        tib_val = tib_c[0] * norm_const
        tib_err2 = tib_c[1] * (norm_const * norm_const)

        if t is not None:
            t.getTime(False)
  
        dp_som3 = common_lib.sub_ncerr(dp_som2, (tib_val, tib_err2))

        if t is not None:
            t.getTime(msg="After subtracting TIB constant from %s" \
                      % dataset_type)
    elif conf.tib_range is not None and dkcur1 is None:
        if conf.verbose:
            print "Determining TIB constant from %s" % dataset_type

        if t is not None:
            t.getTime(False)

        TIB = dr_lib.determine_time_indep_bkg(dp_som2, conf.tib_range,
                                              is_range=True)

        if t is not None:
            t.getTime(msg="After determining TIB constant from %s" \
                      % dataset_type)

        if conf.dump_tib:
            file_comment = "TIB TOF Range: [%d, %d]" % (conf.tib_range[0],
                                                        conf.tib_range[1])
        
            hlr_utils.write_file(conf.output, "text/num-info", TIB,
                                 output_ext="tib",
                                 extra_tag=dataset_type,
                                 verbose=conf.verbose,
                                 data_ext=conf.ext_replacement,
                                 path_replacement=conf.path_replacement,
                                 message="time-independent background "\
                                 +"information",
                                 tag="Average TIB",
                                 units="counts/usec",
                                 comments=[file_comment])
            
        if conf.verbose:
            print "Subtracting TIB constant from %s" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, TIB)

        if t is not None:
            t.getTime(msg="After subtracting TIB constant from %s" \
                      % dataset_type)

        del TIB
    else:
        dp_som3 = dp_som2

    del dp_som2, dkcur1

    if conf.dump_ctof_comb:
        dp_som3_1 = dr_lib.sum_all_spectra(dp_som3)
        hlr_utils.write_file(conf.output, "text/Spec", dp_som3_1,
                             output_ext="ctof",
                             extra_tag=dataset_type,
                             data_ext=conf.ext_replacement,    
                             path_replacement=conf.path_replacement,
                             verbose=conf.verbose,
                             message="combined calibrated TOF information")
        
        del dp_som3_1
    
    return dp_som3
Ejemplo n.º 3
0
def run(config):
    """
    This method is where the data reduction process gets done.

    @param config: Object containing the data reduction configuration
                   information.
    @type config: L{hlr_utils.Configure}
    """
    import sys

    import dr_lib
    import DST

    try:
        data_dst = DST.getInstance("application/x-NeXus", config.data[0])
    except SystemError:
        print "ERROR: Failed to data read file %s" % config.data[0]
        sys.exit(-1)

    so_axis = "time_of_flight"

    if config.verbose:
        print "Reading data file"

    if config.roi_file is None:
        d_som0 = data_dst.getSOM(config.data_paths.toPath(), so_axis,
                                 start_id=config.starting_ids,
                                 end_id=config.ending_ids)
    else:
        d_som0 = data_dst.getSOM(config.data_paths.toPath(), so_axis,
                                 roi_file=config.roi_file)

    if config.width:
        d_som1 = dr_lib.fix_bin_contents(d_som0)
    else:
        d_som1 = d_som0

    del d_som0

    if config.dump_pxl:
        hlr_utils.write_file(config.data[0], "text/Spec", d_som1,
                             output_ext="tfp", verbose=config.verbose,
                             path_replacement=config.path_replacement,
                             message="pixel TOF information")
    else:
        pass

    if config.tib_const is not None:
        import common_lib
        d_som2 = common_lib.sub_ncerr(d_som1, config.tib_const.toValErrTuple())

        if config.dump_sxl:
            hlr_utils.write_file(config.data[0], "text/Spec", d_som2,
                                 output_ext="tsp", verbose=config.verbose,
                                 path_replacement=config.path_replacement,
                                 message="TIB const sub pixel TOF information")
        
    else:
        d_som2 = d_som1

    del d_som1

    if len(d_som2) == 1:
        if config.verbose:
            print "Summing 1 spectrum."        
        d_som3 = d_som2
    else:
        if config.verbose:
            print "Summing %d spectra." % len(d_som2)
        d_som3 = dr_lib.sum_all_spectra(d_som2)
        d_som3[0].id = d_som2[0].id

    del d_som2

    hlr_utils.write_file(config.output, "text/Spec", d_som3, replace_ext=False,
                         verbose=config.verbose,
                         path_replacement=config.path_replacement,
                         message="combined TOF information")
def subtract_bkg_from_data(data_som, bkg_som, **kwargs):
    """
    This function subtracts one data set from another. 

    @param data_som: Object containing the data to subtract from
    @type data_som: C{SOM.SOM} or C{SOM.SO}
    
    @param bkg_som: Object containing the data to be subtracted
    @type bkg_som: C{SOM.SOM} or C{SOM.SO}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword dataset1: The type name of the first dataset. Default is
                       I{dataset1}.
    @type dataset1: C{string}
    
    @keyword dataset2: The type name of the second dataset. Default is
                       I{dataset2}.

    @keyword scale: The constant by which to scale the background spectra
    @type scale: L{hlr_utils.DrParameter}
                       
    @keyword verbose: A flag for turning on information from the function.
    @type verbose: C{boolean}

    @keyword timer: Timing object so the function can perform timing
    @type timer: C{sns_timer.DiffTime}    
 

    @return: The data subtracted by the background
    @rtype: C{SOM.SOM} or C{SOM.SO}


    @raise TypeError: Both objects are not C{SOM}s, a C{SO} and a C{SOM} or
                      a C{SOM} and a C{SO}
    """

    # Kickout if data object is NoneType
    if data_som is None:
        return None

    # Kickout if background object is NoneType
    if bkg_som is None:
        return data_som

    # import the helper functions
    import hlr_utils

    (data_descr, bkg_descr) = hlr_utils.get_descr(data_som, bkg_som)

    if data_descr == "SOM" and bkg_descr == "SOM":
        hlr_utils.math_compatible(data_som, data_descr, bkg_som, bkg_descr)
    elif data_descr == "SOM" and bkg_descr == "SO" or \
         data_descr == "SO" and bkg_descr == "SOM":
        # You have SO-SOM or SOM-SO, so assume everything is OK
        pass        
    else:
        raise TypeError("The object combinations must be SOM-SOM, SO-SOM "\
                        +"or SOM-SO. You provided a %s and a %s" % \
                        (data_descr, bkg_descr))

    # Check for keywords
    try:
        verbose = kwargs["verbose"]
    except KeyError:
        verbose = False

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        dataset1 = kwargs["dataset1"]
    except KeyError:
        dataset1 = "dataset1"

    try:
        dataset2 = kwargs["dataset2"]
    except KeyError:
        dataset2 = "dataset2"

    try:
        scale = kwargs["scale"]
    except KeyError:
        scale = None

    import common_lib

    if scale is not None:
        if verbose:
            print "Scaling %s for %s" % (dataset2, dataset1)
        
        bkg_som2 = common_lib.mult_ncerr(bkg_som, scale.toValErrTuple())
        
        if t is not None:
            t.getTime(msg="After scaling %s for %s " % (dataset2, dataset1))
    else:
        bkg_som2 = bkg_som

    del bkg_som

    if verbose:
        print "Subtracting %s from %s" % (dataset2, dataset1)
        
    data_som2 = common_lib.sub_ncerr(data_som, bkg_som2)

    if t is not None:
        t.getTime(msg="After subtracting %s from %s " % (dataset2, dataset1))

    return data_som2
def subtract_bkg_from_data(data_som, bkg_som, **kwargs):
    """
    This function subtracts one data set from another. 

    @param data_som: Object containing the data to subtract from
    @type data_som: C{SOM.SOM} or C{SOM.SO}
    
    @param bkg_som: Object containing the data to be subtracted
    @type bkg_som: C{SOM.SOM} or C{SOM.SO}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword dataset1: The type name of the first dataset. Default is
                       I{dataset1}.
    @type dataset1: C{string}
    
    @keyword dataset2: The type name of the second dataset. Default is
                       I{dataset2}.

    @keyword scale: The constant by which to scale the background spectra
    @type scale: L{hlr_utils.DrParameter}
                       
    @keyword verbose: A flag for turning on information from the function.
    @type verbose: C{boolean}

    @keyword timer: Timing object so the function can perform timing
    @type timer: C{sns_timer.DiffTime}    
 

    @return: The data subtracted by the background
    @rtype: C{SOM.SOM} or C{SOM.SO}


    @raise TypeError: Both objects are not C{SOM}s, a C{SO} and a C{SOM} or
                      a C{SOM} and a C{SO}
    """

    # Kickout if data object is NoneType
    if data_som is None:
        return None

    # Kickout if background object is NoneType
    if bkg_som is None:
        return data_som

    # import the helper functions
    import hlr_utils

    (data_descr, bkg_descr) = hlr_utils.get_descr(data_som, bkg_som)

    if data_descr == "SOM" and bkg_descr == "SOM":
        hlr_utils.math_compatible(data_som, data_descr, bkg_som, bkg_descr)
    elif data_descr == "SOM" and bkg_descr == "SO" or \
         data_descr == "SO" and bkg_descr == "SOM":
        # You have SO-SOM or SOM-SO, so assume everything is OK
        pass
    else:
        raise TypeError("The object combinations must be SOM-SOM, SO-SOM "\
                        +"or SOM-SO. You provided a %s and a %s" % \
                        (data_descr, bkg_descr))

    # Check for keywords
    try:
        verbose = kwargs["verbose"]
    except KeyError:
        verbose = False

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        dataset1 = kwargs["dataset1"]
    except KeyError:
        dataset1 = "dataset1"

    try:
        dataset2 = kwargs["dataset2"]
    except KeyError:
        dataset2 = "dataset2"

    try:
        scale = kwargs["scale"]
    except KeyError:
        scale = None

    import common_lib

    if scale is not None:
        if verbose:
            print "Scaling %s for %s" % (dataset2, dataset1)

        bkg_som2 = common_lib.mult_ncerr(bkg_som, scale.toValErrTuple())

        if t is not None:
            t.getTime(msg="After scaling %s for %s " % (dataset2, dataset1))
    else:
        bkg_som2 = bkg_som

    del bkg_som

    if verbose:
        print "Subtracting %s from %s" % (dataset2, dataset1)

    data_som2 = common_lib.sub_ncerr(data_som, bkg_som2)

    if t is not None:
        t.getTime(msg="After subtracting %s from %s " % (dataset2, dataset1))

    return data_som2
Ejemplo n.º 6
0
def calibrate_dgs_data(datalist, conf, dkcur, **kwargs):
    """
    This function combines Steps 3 through 6 in Section 2.1.1 of the data
    reduction process for Direct Geometry Spectrometers as specified by the
    document at 
    U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The
    function takes a list of file names, a L{hlr_utils.Configure} object and
    processes the data accordingly.
    
    @param datalist: A list containing the filenames of the data to be
                     processed.
    @type datalist: C{list} of C{string}s
    
    @param conf: Object that contains the current setup of the driver.
    @type conf: L{hlr_utils.Configure}

    @param dkcur: The object containing the TOF dark current data.
    @type dkcur: C{SOM.SOM}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword inst_geom_dst: File object that contains instrument geometry
                            information.
    @type inst_geom_dst: C{DST.GeomDST}

    @keyword tib_const: A time-independent background constant to subtract
                        from every pixel.
    @type tib_const: L{hlr_utils.DrParameter}
    
    @keyword dataset_type: The practical name of the dataset being processed.
                           The default value is I{data}.
    @type dataset_type: C{string}

    @keyword cwp: A list of chopper phase corrections in units of microseconds.
    @type cwp: C{list} of C{float}s
    
    @keyword timer: Timing object so the function can perform timing estimates.
    @type timer: C{sns_timer.DiffTime}


    @return: Object that has undergone all requested processing steps
    @rtype: C{SOM.SOM}
    """
    import common_lib
    import dr_lib
    import hlr_utils

    # Check keywords
    try:
        tib_const = kwargs["tib_const"]
    except KeyError:
        tib_const = None

    try:
        dataset_type = kwargs["dataset_type"]
    except KeyError:
        dataset_type = "data"

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        i_geom_dst = kwargs["inst_geom_dst"]
    except KeyError:
        i_geom_dst = None

    dataset_cwp = kwargs.get("cwp")

    # Open the appropriate datafiles
    if conf.verbose:
        print "Reading %s file" % dataset_type

    data_paths = conf.data_paths.toPath()
    if conf.no_mon_norm:
        mon_paths = None
    else:
        mon_paths = conf.usmon_path.toPath()

    # Check for mask file since normalization drive doesn't understand option
    try:
        mask_file = conf.mask_file
    except AttributeError:
        mask_file = None

    if t is not None:
        oldtime = t.getOldTime()

    (dp_som0, dm_som0) = dr_lib.add_files_dm(datalist,
                                             Data_Paths=data_paths,
                                             Mon_Paths=mon_paths,
                                             SO_Axis=conf.so_axis,
                                             Signal_ROI=conf.roi_file,
                                             Signal_MASK=mask_file,
                                             dataset_type=dataset_type,
                                             dataset_cwp=dataset_cwp,
                                             Verbose=conf.verbose,
                                             Timer=t)

    if t is not None:
        t.setOldTime(oldtime)
        t.getTime(msg="After reading %s file" % dataset_type)

    # Cut the spectra if necessary
    dp_somA = dr_lib.cut_spectra(dp_som0, conf.tof_cut_min, conf.tof_cut_max)

    del dp_som0

    dp_somB = dr_lib.fix_bin_contents(dp_somA)

    del dp_somA

    if dp_somB.attr_list.instrument.get_name() != "CNCS":

        if conf.verbose:
            print "Cutting spectrum at minimum TOF"

        if t is not None:
            t.getTime(False)

        # Calculate minimum TOF for physical neutrons
        if conf.initial_energy is not None:
            initial_wavelength = common_lib.energy_to_wavelength(\
            conf.initial_energy.toValErrTuple())
            initial_velocity = common_lib.wavelength_to_velocity(\
            initial_wavelength)
        else:
            # This should actually calculate it, but don't have a way right now
            pass

        if conf.time_zero_offset is not None:
            time_zero_offset = conf.time_zero_offset.toValErrTuple()
        else:
            # This should actually calculate it, but don't have a way right now
            time_zero_offset = (0.0, 0.0)

        ss_length = dp_somB.attr_list.instrument.get_primary()

        tof_min = (ss_length[0] / initial_velocity[0]) + time_zero_offset[0]

        # Cut all spectra a the minimum TOF
        dp_som1 = dr_lib.cut_spectra(dp_somB, tof_min, None)

        if t is not None:
            t.getTime(msg="After cutting spectrum at minimum TOF ")
    else:
        dp_som1 = dp_somB

    del dp_somB

    if dm_som0 is not None:
        dm_som1 = dr_lib.fix_bin_contents(dm_som0)
    else:
        dm_som1 = dm_som0

    del dm_som0

    # Override geometry if necessary
    if conf.inst_geom is not None:
        i_geom_dst.setGeometry(data_paths, dp_som1)

    if conf.inst_geom is not None and dm_som1 is not None:
        i_geom_dst.setGeometry(mon_paths, dm_som1)

    # Step 3: Integrate the upstream monitor
    if dm_som1 is not None:
        if conf.verbose:
            print "Integrating upstream monitor spectrum"

        if t is not None:
            t.getTime(False)

        if conf.mon_int_range is None:
            start_val = float("inf")
            end_val = float("inf")
        else:
            start_val = conf.mon_int_range[0]
            end_val = conf.mon_int_range[1]

        dm_som2 = dr_lib.integrate_spectra(dm_som1,
                                           start=start_val,
                                           end=end_val,
                                           width=True)
        if t is not None:
            t.getTime(msg="After integrating upstream monitor spectrum ")
    else:
        dm_som2 = dm_som1

    del dm_som1

    tib_norm_const = None

    # Step 4: Divide data set by summed monitor spectrum
    if dm_som2 is not None:
        if conf.verbose:
            print "Normalizing %s by monitor sum" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som2 = common_lib.div_ncerr(dp_som1, dm_som2, length_one_som=True)

        tib_norm_const = dm_som2[0].y

        if t is not None:
            t.getTime(msg="After normalizing %s by monitor sum" % dataset_type)

    elif conf.pc_norm:
        if conf.verbose:
            print "Normalizing %s by proton charge" % dataset_type

        pc_tag = dataset_type + "-proton_charge"
        pc = dp_som1.attr_list[pc_tag]

        # Scale the proton charge and then set the scale PC back to attributes
        if conf.scale_pc is not None:
            if conf.verbose:
                print "Scaling %s proton charge" % dataset_type

            pc = hlr_utils.scale_proton_charge(pc, conf.scale_pc)
            dp_som1.attr_list[pc_tag] = pc

        tib_norm_const = pc.getValue()

        if t is not None:
            t.getTime(False)

        dp_som2 = common_lib.div_ncerr(dp_som1, (pc.getValue(), 0.0))

        if t is not None:
            t.getTime(msg="After normalizing %s by proton charge" \
                      % dataset_type)

    else:
        dp_som2 = dp_som1

    del dp_som1, dm_som2

    # Step 5: Scale dark current by data set measurement time
    if dkcur is not None:
        if conf.verbose:
            print "Scaling dark current by %s acquisition time" % dataset_type

        if t is not None:
            t.getTime(False)

        dstime_tag = dataset_type + "-duration"
        dstime = dp_som2.attr_list[dstime_tag]

        dkcur1 = common_lib.div_ncerr(dkcur, (dstime.getValue(), 0.0))

        if t is not None:
            t.getTime(msg="After scaling dark current by %s acquisition time" \
                      % dataset_type)
    else:
        dkcur1 = dkcur

    del dkcur

    # Step 6: Subtract scaled dark current from data set
    if dkcur1 is not None:
        if conf.verbose:
            print "Subtracting %s by scaled dark current" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, dkcur1)

        if t is not None:
            t.getTime(msg="After subtracting %s by scaled dark current" \
                      % dataset_type)
    elif tib_const is not None and dkcur1 is None:
        if conf.verbose:
            print "Subtracting TIB constant from %s" % dataset_type

        # Normalize the TIB constant by dividing by the current normalization
        # the duration (if necessary) and the conversion from seconds to
        # microseconds
        tib_c = tib_const.toValErrTuple()

        conv_sec_to_usec = 1.0e-6

        if tib_norm_const is None:
            tib_norm_const = 1
            duration = 1
        else:
            duration_tag = dataset_type + "-duration"
            duration = dp_som2.attr_list[duration_tag].getValue()

        norm_const = (duration * conv_sec_to_usec) / tib_norm_const

        tib_val = tib_c[0] * norm_const
        tib_err2 = tib_c[1] * (norm_const * norm_const)

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, (tib_val, tib_err2))

        if t is not None:
            t.getTime(msg="After subtracting TIB constant from %s" \
                      % dataset_type)
    elif conf.tib_range is not None and dkcur1 is None:
        if conf.verbose:
            print "Determining TIB constant from %s" % dataset_type

        if t is not None:
            t.getTime(False)

        TIB = dr_lib.determine_time_indep_bkg(dp_som2,
                                              conf.tib_range,
                                              is_range=True)

        if t is not None:
            t.getTime(msg="After determining TIB constant from %s" \
                      % dataset_type)

        if conf.dump_tib:
            file_comment = "TIB TOF Range: [%d, %d]" % (conf.tib_range[0],
                                                        conf.tib_range[1])

            hlr_utils.write_file(conf.output, "text/num-info", TIB,
                                 output_ext="tib",
                                 extra_tag=dataset_type,
                                 verbose=conf.verbose,
                                 data_ext=conf.ext_replacement,
                                 path_replacement=conf.path_replacement,
                                 message="time-independent background "\
                                 +"information",
                                 tag="Average TIB",
                                 units="counts/usec",
                                 comments=[file_comment])

        if conf.verbose:
            print "Subtracting TIB constant from %s" % dataset_type

        if t is not None:
            t.getTime(False)

        dp_som3 = common_lib.sub_ncerr(dp_som2, TIB)

        if t is not None:
            t.getTime(msg="After subtracting TIB constant from %s" \
                      % dataset_type)

        del TIB
    else:
        dp_som3 = dp_som2

    del dp_som2, dkcur1

    if conf.dump_ctof_comb:
        dp_som3_1 = dr_lib.sum_all_spectra(dp_som3)
        hlr_utils.write_file(conf.output,
                             "text/Spec",
                             dp_som3_1,
                             output_ext="ctof",
                             extra_tag=dataset_type,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             verbose=conf.verbose,
                             message="combined calibrated TOF information")

        del dp_som3_1

    return dp_som3
Ejemplo n.º 7
0
def process_igs_data(datalist, conf, **kwargs):
    """
    This function combines Steps 1 through 8 of the data reduction process for
    Inverse Geometry Spectrometers as specified by the documents at
    U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The
    function takes a list of file names, a L{hlr_utils.Configure} object and
    processes the data accordingly. This function should really only be used in
    the context of I{amorphous_reduction} and I{calc_norm_eff}.

    @param datalist: A list containing the filenames of the data to be
    processed.
    @type datalist: C{list} of C{string}s
    
    @param conf: Object that contains the current setup of the driver.
    @type conf: L{hlr_utils.Configure}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword inst_geom_dst: File object that contains instrument geometry
    information.
    @type inst_geom_dst: C{DST.GeomDST}
    
    @keyword dataset_type: The practical name of the dataset being processed.
    The default value is I{data}.
    @type dataset_type: C{string}
    
    @keyword tib_const: Object providing the time-independent background
    constant to subtract.
    @type tib_const: L{hlr_utils.DrParameter}

    @keyword bkg_som: Object that will be used for early background subtraction
    @type bkg_som: C{SOM.SOM}
    
    @keyword timer: Timing object so the function can perform timing estimates.
    @type timer: C{sns_timer.DiffTime}


    @return: Object that has undergone all requested processing steps
    @rtype: C{SOM.SOM}
    """
    import hlr_utils

    # Check keywords
    try:
        dataset_type = kwargs["dataset_type"]
    except KeyError:
        dataset_type = "data"

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        if kwargs["tib_const"] is not None:
            tib_const = kwargs["tib_const"].toValErrTuple()
        else:
            tib_const = None
    except KeyError:
        tib_const = None

    try:
        i_geom_dst = kwargs["inst_geom_dst"]
    except KeyError:
        i_geom_dst = None

    try:
        bkg_som = kwargs["bkg_som"]
    except KeyError:
        bkg_som = None

    # Step 1: Open appropriate data files
    if not conf.mc:
        so_axis = "time_of_flight"
    else:
        so_axis = "Time_of_Flight"

    # Add so_axis to Configure object
    conf.so_axis = so_axis

    if conf.verbose:
        print "Reading %s file" % dataset_type

    # Special case handling for normalization data. Dynamically trying to
    # determine if incoming file is a previously calculated one.
    if dataset_type == "normalization":
        try:
            # Check the first incoming file
            dst_type = hlr_utils.file_peeker(datalist[0])
            # If file_peeker succeeds, the DST is different than the function
            # returns
            dst_type = "text/num-info"
            # Let ROI file handle filtering
            data_paths = None
        except RuntimeError:
            # It's a NeXus file
            dst_type = "application/x-NeXus"
            data_paths = conf.data_paths.toPath()
    else:
        dst_type = "application/x-NeXus"
        data_paths = conf.data_paths.toPath()

    # The [0] is to get the data SOM and ignore the None background SOM
    dp_som0 = dr_lib.add_files(datalist,
                               Data_Paths=data_paths,
                               SO_Axis=so_axis,
                               Signal_ROI=conf.roi_file,
                               dataset_type=dataset_type,
                               dst_type=dst_type,
                               Verbose=conf.verbose,
                               Timer=t)

    if t is not None:
        t.getTime(msg="After reading %s " % dataset_type)

    if dst_type == "text/num-info":
        # Since we have a pre-calculated normalization dataset, set the flag
        # and return the SOM now
        conf.pre_norm = True
        # Make the labels and units compatible with a NeXus file based SOM
        dp_som0.setAxisLabel(0, "wavelength")
        dp_som0.setAxisUnits(0, "Angstroms")
        dp_som0.setYUnits("Counts/A")
        return dp_som0
    else:
        if dataset_type == "normalization":
            # Since we have a NeXus file, we need to continue
            conf.pre_norm = False

    # Cut the spectra if necessary
    dp_somA = dr_lib.cut_spectra(dp_som0, conf.tof_cut_min, conf.tof_cut_max)

    del dp_som0

    dp_som1 = dr_lib.fix_bin_contents(dp_somA)

    del dp_somA

    if conf.inst_geom is not None:
        i_geom_dst.setGeometry(conf.data_paths.toPath(), dp_som1)

    if conf.no_mon_norm:
        dm_som1 = None
    else:
        if conf.verbose:
            print "Reading in monitor data from %s file" % dataset_type

        # The [0] is to get the data SOM and ignore the None background SOM
        dm_som0 = dr_lib.add_files(datalist,
                                   Data_Paths=conf.mon_path.toPath(),
                                   SO_Axis=so_axis,
                                   dataset_type=dataset_type,
                                   Verbose=conf.verbose,
                                   Timer=t)

        if t is not None:
            t.getTime(msg="After reading monitor data ")

        dm_som1 = dr_lib.fix_bin_contents(dm_som0)

        del dm_som0

        if conf.inst_geom is not None:
            i_geom_dst.setGeometry(conf.mon_path.toPath(), dm_som1)

    if bkg_som is not None:
        bkg_pcharge = bkg_som.attr_list["background-proton_charge"].getValue()
        data_pcharge = dp_som1.attr_list[dataset_type +
                                         "-proton_charge"].getValue()

        ratio = data_pcharge / bkg_pcharge

        bkg_som1 = common_lib.mult_ncerr(bkg_som, (ratio, 0.0))

        del bkg_som

        dp_som2 = dr_lib.subtract_bkg_from_data(dp_som1,
                                                bkg_som1,
                                                verbose=conf.verbose,
                                                timer=t,
                                                dataset1=dataset_type,
                                                dataset2="background")

    else:
        dp_som2 = dp_som1

    del dp_som1

    # Step 2: Dead Time Correction
    # No dead time correction is being applied to the data yet

    # Step 3: Time-independent background determination
    if conf.verbose and conf.tib_tofs is not None:
        print "Determining time-independent background from data"

    if t is not None and conf.tib_tofs is not None:
        t.getTime(False)

    B = dr_lib.determine_time_indep_bkg(dp_som2, conf.tib_tofs)

    if t is not None and B is not None:
        t.getTime(msg="After determining time-independent background ")

    if conf.dump_tib and B is not None:
        file_comment = "TOFs: %s" % conf.tib_tofs

        hlr_utils.write_file(conf.output, "text/num-info", B,
                             output_ext="tib",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="time-independent background "\
                             +"information",
                             tag="Average",
                             units="counts",
                             comments=[file_comment])

    # Step 4: Subtract time-independent background
    if conf.verbose and B is not None:
        print "Subtracting time-independent background from data"

    if t is not None:
        t.getTime(False)

    if B is not None:
        dp_som3 = common_lib.sub_ncerr(dp_som2, B)
    else:
        dp_som3 = dp_som2

    if B is not None and t is not None:
        t.getTime(msg="After subtracting time-independent background ")

    del dp_som2, B

    # Step 5: Subtract time-independent background constant
    if conf.verbose and tib_const is not None:
        print "Subtracting time-independent background constant from data"

    if t is not None and tib_const is not None:
        t.getTime(False)

    if tib_const is not None:
        dp_som4 = common_lib.sub_ncerr(dp_som3, tib_const)
    else:
        dp_som4 = dp_som3

    if t is not None and tib_const is not None:
        t.getTime(msg="After subtracting time-independent background "\
                  +"constant ")

    del dp_som3

    # Provide override capability for final wavelength, time-zero slope and
    # time-zero offset

    if conf.wavelength_final is not None:
        dp_som4.attr_list["Wavelength_final"] = \
                                     conf.wavelength_final.toValErrTuple()

    # Note: time_zero_slope MUST be a tuple
    if conf.time_zero_slope is not None:
        dp_som4.attr_list["Time_zero_slope"] = \
                                     conf.time_zero_slope.toValErrTuple()
        if dm_som1 is not None:
            dm_som1.attr_list["Time_zero_slope"] = \
                                          conf.time_zero_slope.toValErrTuple()

    # Note: time_zero_offset MUST be a tuple
    if conf.time_zero_offset is not None:
        dp_som4.attr_list["Time_zero_offset"] = \
                                     conf.time_zero_offset.toValErrTuple()
        if dm_som1 is not None:
            dm_som1.attr_list["Time_zero_offset"] = \
                                      conf.time_zero_offset.toValErrTuple()

    # Step 6: Convert TOF to wavelength for data and monitor
    if conf.verbose:
        print "Converting TOF to wavelength"

    if t is not None:
        t.getTime(False)

    # Convert monitor
    if dm_som1 is not None:
        dm_som2 = common_lib.tof_to_wavelength_lin_time_zero(
            dm_som1, units="microsecond")
    else:
        dm_som2 = None

    # Convert detector pixels
    dp_som5 = common_lib.tof_to_initial_wavelength_igs_lin_time_zero(
        dp_som4, units="microsecond", run_filter=conf.filter)

    if t is not None:
        t.getTime(msg="After converting TOF to wavelength ")

    if conf.dump_wave:
        hlr_utils.write_file(conf.output,
                             "text/Spec",
                             dp_som5,
                             output_ext="pxl",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="pixel wavelength information")
    if conf.dump_mon_wave and dm_som2 is not None:
        hlr_utils.write_file(conf.output,
                             "text/Spec",
                             dm_som2,
                             output_ext="mxl",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="monitor wavelength information")

    del dp_som4, dm_som1

    # Step 7: Efficiency correct monitor
    if conf.verbose and dm_som2 is not None and not conf.no_mon_effc:
        print "Efficiency correct monitor data"

    if t is not None:
        t.getTime(False)

    if not conf.no_mon_effc:
        dm_som3 = dr_lib.feff_correct_mon(dm_som2)
    else:
        dm_som3 = dm_som2

    if t is not None and dm_som2 is not None and not conf.no_mon_effc:
        t.getTime(msg="After efficiency correcting monitor ")

    if conf.dump_mon_effc and not conf.no_mon_effc and dm_som3 is not None:
        hlr_utils.write_file(conf.output, "text/Spec", dm_som3,
                             output_ext="mel",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="monitor wavelength information "\
                             +"(efficiency)")

    del dm_som2

    # Step 8: Rebin monitor axis onto detector pixel axis
    if conf.verbose and dm_som3 is not None:
        print "Rebin monitor axis to detector pixel axis"

    if t is not None:
        t.getTime(False)

    dm_som4 = dr_lib.rebin_monitor(dm_som3, dp_som5)

    if t is not None and dm_som4 is not None:
        t.getTime(msg="After rebinning monitor ")

    del dm_som3

    if conf.dump_mon_rebin and dm_som4 is not None:
        hlr_utils.write_file(conf.output, "text/Spec", dm_som4,
                             output_ext="mrl",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message="monitor wavelength information "\
                             +"(rebinned)")

    # The lambda-dependent background is only done on sample data (aka data)
    # for the BSS instrument at the SNS
    if conf.inst == "BSS" and conf.ldb_const is not None and \
           dataset_type == "data":
        # Step 9: Convert chopper center wavelength to TOF center
        if conf.verbose:
            print "Converting chopper center wavelength to TOF"

        if t is not None:
            t.getTime(False)

        tof_center = dr_lib.convert_single_to_list(\
            "initial_wavelength_igs_lin_time_zero_to_tof",
            conf.chopper_lambda_cent.toValErrTuple(), dp_som5)

        # Step 10: Calculate beginning and end of detector TOF spectrum
        if conf.verbose:
            print "Calculating beginning and ending TOF ranges"

        half_inv_chop_freq = 0.5 / conf.chopper_freq.toValErrTuple()[0]
        # Above is in seconds, need microseconds
        half_inv_chop_freq *= 1.0e6

        tof_begin = common_lib.sub_ncerr(tof_center, (half_inv_chop_freq, 0.0))
        tof_end = common_lib.add_ncerr(tof_center, (half_inv_chop_freq, 0.0))

        # Step 11: Convert TOF_begin and TOF_end to wavelength
        if conf.verbose:
            print "Converting TOF_begin and TOF_end to wavelength"

        # Check for time-zero slope information
        try:
            tz_slope = conf.time_zero_slope.toValErrTuple()
        except AttributeError:
            tz_slope = (0.0, 0.0)

        # Check for time-zero offset information
        try:
            tz_offset = conf.time_zero_offset.toValErrTuple()
        except AttributeError:
            tz_offset = (0.0, 0.0)

        l_begin = common_lib.tof_to_initial_wavelength_igs_lin_time_zero(\
            tof_begin, time_zero_slope=tz_slope, time_zero_offset=tz_offset,
            iobj=dp_som5, run_filter=False)
        l_end = common_lib.tof_to_initial_wavelength_igs_lin_time_zero(\
            tof_end, time_zero_slope=tz_slope, time_zero_offset=tz_offset,
            iobj=dp_som5, run_filter=False)

        # Step 12: tof-least-bkg to lambda-least-bkg
        if conf.verbose:
            print "Converting TOF least background to wavelength"

        lambda_least_bkg = dr_lib.convert_single_to_list(\
            "tof_to_initial_wavelength_igs_lin_time_zero",
            conf.tof_least_bkg.toValErrTuple(), dp_som5)

        if t is not None:
            t.getTime(msg="After converting boundary positions ")

        # Step 13: Create lambda-dependent background spectrum
        if conf.verbose:
            print "Creating lambda-dependent background spectra"

        if t is not None:
            t.getTime(False)

        ldb_som = dr_lib.shift_spectrum(dm_som4, lambda_least_bkg, l_begin,
                                        l_end, conf.ldb_const.getValue())

        if t is not None:
            t.getTime(msg="After creating lambda-dependent background "\
                      +"spectra ")

        # Step 14: Subtract lambda-dependent background from sample data
        if conf.verbose:
            print "Subtracting lambda-dependent background from data"

        if t is not None:
            t.getTime(False)

        dp_som6 = common_lib.sub_ncerr(dp_som5, ldb_som)

        if t is not None:
            t.getTime(msg="After subtracting lambda-dependent background "\
                      +"from data ")
    else:
        dp_som6 = dp_som5

    del dp_som5

    # Step 15: Normalize data by monitor
    if conf.verbose and dm_som4 is not None:
        print "Normalizing data by monitor"

    if t is not None:
        t.getTime(False)

    if dm_som4 is not None:
        dp_som7 = common_lib.div_ncerr(dp_som6, dm_som4)

        if t is not None:
            t.getTime(msg="After normalizing data by monitor ")
    else:
        dp_som7 = dp_som6

    if conf.dump_wave_mnorm:
        dp_som7_1 = dr_lib.sum_all_spectra(dp_som7,\
                                   rebin_axis=conf.lambda_bins.toNessiList())

        write_message = "combined pixel wavelength information"
        if dm_som4 is not None:
            write_message += " (monitor normalized)"

        hlr_utils.write_file(conf.output,
                             "text/Spec",
                             dp_som7_1,
                             output_ext="pml",
                             extra_tag=dataset_type,
                             verbose=conf.verbose,
                             data_ext=conf.ext_replacement,
                             path_replacement=conf.path_replacement,
                             message=write_message)
        del dp_som7_1

    del dm_som4, dp_som6

    return dp_som7
Ejemplo n.º 8
0
def process_igs_data(datalist, conf, **kwargs):
    """
    This function combines Steps 1 through 8 of the data reduction process for
    Inverse Geometry Spectrometers as specified by the documents at
    U{http://neutrons.ornl.gov/asg/projects/SCL/reqspec/DR_Lib_RS.doc}. The
    function takes a list of file names, a L{hlr_utils.Configure} object and
    processes the data accordingly. This function should really only be used in
    the context of I{amorphous_reduction} and I{calc_norm_eff}.

    @param datalist: A list containing the filenames of the data to be
    processed.
    @type datalist: C{list} of C{string}s
    
    @param conf: Object that contains the current setup of the driver.
    @type conf: L{hlr_utils.Configure}
    
    @param kwargs: A list of keyword arguments that the function accepts:
    
    @keyword inst_geom_dst: File object that contains instrument geometry
    information.
    @type inst_geom_dst: C{DST.GeomDST}
    
    @keyword dataset_type: The practical name of the dataset being processed.
    The default value is I{data}.
    @type dataset_type: C{string}
    
    @keyword tib_const: Object providing the time-independent background
    constant to subtract.
    @type tib_const: L{hlr_utils.DrParameter}

    @keyword bkg_som: Object that will be used for early background subtraction
    @type bkg_som: C{SOM.SOM}
    
    @keyword timer: Timing object so the function can perform timing estimates.
    @type timer: C{sns_timer.DiffTime}


    @return: Object that has undergone all requested processing steps
    @rtype: C{SOM.SOM}
    """
    import hlr_utils

    # Check keywords
    try:
        dataset_type = kwargs["dataset_type"]
    except KeyError:
        dataset_type = "data"

    try:
        t = kwargs["timer"]
    except KeyError:
        t = None

    try:
        if kwargs["tib_const"] is not None:
            tib_const = kwargs["tib_const"].toValErrTuple()
        else:
            tib_const = None
    except KeyError:
        tib_const = None

    try:
        i_geom_dst = kwargs["inst_geom_dst"]
    except KeyError:
        i_geom_dst = None

    try:
        bkg_som = kwargs["bkg_som"]
    except KeyError:
        bkg_som = None

    # Step 1: Open appropriate data files
    if not conf.mc:
        so_axis = "time_of_flight"
    else:
        so_axis = "Time_of_Flight"

    # Add so_axis to Configure object
    conf.so_axis = so_axis

    if conf.verbose:
        print "Reading %s file" % dataset_type

    # Special case handling for normalization data. Dynamically trying to
    # determine if incoming file is a previously calculated one.
    if dataset_type == "normalization":
        try:
            # Check the first incoming file
            dst_type = hlr_utils.file_peeker(datalist[0])
            # If file_peeker succeeds, the DST is different than the function
            # returns
            dst_type = "text/num-info"
            # Let ROI file handle filtering
            data_paths = None
        except RuntimeError:
            # It's a NeXus file
            dst_type = "application/x-NeXus"
            data_paths = conf.data_paths.toPath()
    else:
        dst_type = "application/x-NeXus"
        data_paths = conf.data_paths.toPath()

    # The [0] is to get the data SOM and ignore the None background SOM
    dp_som0 = dr_lib.add_files(
        datalist,
        Data_Paths=data_paths,
        SO_Axis=so_axis,
        Signal_ROI=conf.roi_file,
        dataset_type=dataset_type,
        dst_type=dst_type,
        Verbose=conf.verbose,
        Timer=t,
    )

    if t is not None:
        t.getTime(msg="After reading %s " % dataset_type)

    if dst_type == "text/num-info":
        # Since we have a pre-calculated normalization dataset, set the flag
        # and return the SOM now
        conf.pre_norm = True
        # Make the labels and units compatible with a NeXus file based SOM
        dp_som0.setAxisLabel(0, "wavelength")
        dp_som0.setAxisUnits(0, "Angstroms")
        dp_som0.setYUnits("Counts/A")
        return dp_som0
    else:
        if dataset_type == "normalization":
            # Since we have a NeXus file, we need to continue
            conf.pre_norm = False

    # Cut the spectra if necessary
    dp_somA = dr_lib.cut_spectra(dp_som0, conf.tof_cut_min, conf.tof_cut_max)

    del dp_som0

    dp_som1 = dr_lib.fix_bin_contents(dp_somA)

    del dp_somA

    if conf.inst_geom is not None:
        i_geom_dst.setGeometry(conf.data_paths.toPath(), dp_som1)

    if conf.no_mon_norm:
        dm_som1 = None
    else:
        if conf.verbose:
            print "Reading in monitor data from %s file" % dataset_type

        # The [0] is to get the data SOM and ignore the None background SOM
        dm_som0 = dr_lib.add_files(
            datalist,
            Data_Paths=conf.mon_path.toPath(),
            SO_Axis=so_axis,
            dataset_type=dataset_type,
            Verbose=conf.verbose,
            Timer=t,
        )

        if t is not None:
            t.getTime(msg="After reading monitor data ")

        dm_som1 = dr_lib.fix_bin_contents(dm_som0)

        del dm_som0

        if conf.inst_geom is not None:
            i_geom_dst.setGeometry(conf.mon_path.toPath(), dm_som1)

    if bkg_som is not None:
        bkg_pcharge = bkg_som.attr_list["background-proton_charge"].getValue()
        data_pcharge = dp_som1.attr_list[dataset_type + "-proton_charge"].getValue()

        ratio = data_pcharge / bkg_pcharge

        bkg_som1 = common_lib.mult_ncerr(bkg_som, (ratio, 0.0))

        del bkg_som

        dp_som2 = dr_lib.subtract_bkg_from_data(
            dp_som1, bkg_som1, verbose=conf.verbose, timer=t, dataset1=dataset_type, dataset2="background"
        )

    else:
        dp_som2 = dp_som1

    del dp_som1

    # Step 2: Dead Time Correction
    # No dead time correction is being applied to the data yet

    # Step 3: Time-independent background determination
    if conf.verbose and conf.tib_tofs is not None:
        print "Determining time-independent background from data"

    if t is not None and conf.tib_tofs is not None:
        t.getTime(False)

    B = dr_lib.determine_time_indep_bkg(dp_som2, conf.tib_tofs)

    if t is not None and B is not None:
        t.getTime(msg="After determining time-independent background ")

    if conf.dump_tib and B is not None:
        file_comment = "TOFs: %s" % conf.tib_tofs

        hlr_utils.write_file(
            conf.output,
            "text/num-info",
            B,
            output_ext="tib",
            extra_tag=dataset_type,
            verbose=conf.verbose,
            data_ext=conf.ext_replacement,
            path_replacement=conf.path_replacement,
            message="time-independent background " + "information",
            tag="Average",
            units="counts",
            comments=[file_comment],
        )

    # Step 4: Subtract time-independent background
    if conf.verbose and B is not None:
        print "Subtracting time-independent background from data"

    if t is not None:
        t.getTime(False)

    if B is not None:
        dp_som3 = common_lib.sub_ncerr(dp_som2, B)
    else:
        dp_som3 = dp_som2

    if B is not None and t is not None:
        t.getTime(msg="After subtracting time-independent background ")

    del dp_som2, B

    # Step 5: Subtract time-independent background constant
    if conf.verbose and tib_const is not None:
        print "Subtracting time-independent background constant from data"

    if t is not None and tib_const is not None:
        t.getTime(False)

    if tib_const is not None:
        dp_som4 = common_lib.sub_ncerr(dp_som3, tib_const)
    else:
        dp_som4 = dp_som3

    if t is not None and tib_const is not None:
        t.getTime(msg="After subtracting time-independent background " + "constant ")

    del dp_som3

    # Provide override capability for final wavelength, time-zero slope and
    # time-zero offset

    if conf.wavelength_final is not None:
        dp_som4.attr_list["Wavelength_final"] = conf.wavelength_final.toValErrTuple()

    # Note: time_zero_slope MUST be a tuple
    if conf.time_zero_slope is not None:
        dp_som4.attr_list["Time_zero_slope"] = conf.time_zero_slope.toValErrTuple()
        if dm_som1 is not None:
            dm_som1.attr_list["Time_zero_slope"] = conf.time_zero_slope.toValErrTuple()

    # Note: time_zero_offset MUST be a tuple
    if conf.time_zero_offset is not None:
        dp_som4.attr_list["Time_zero_offset"] = conf.time_zero_offset.toValErrTuple()
        if dm_som1 is not None:
            dm_som1.attr_list["Time_zero_offset"] = conf.time_zero_offset.toValErrTuple()

    # Step 6: Convert TOF to wavelength for data and monitor
    if conf.verbose:
        print "Converting TOF to wavelength"

    if t is not None:
        t.getTime(False)

    # Convert monitor
    if dm_som1 is not None:
        dm_som2 = common_lib.tof_to_wavelength_lin_time_zero(dm_som1, units="microsecond")
    else:
        dm_som2 = None

    # Convert detector pixels
    dp_som5 = common_lib.tof_to_initial_wavelength_igs_lin_time_zero(
        dp_som4, units="microsecond", run_filter=conf.filter
    )

    if t is not None:
        t.getTime(msg="After converting TOF to wavelength ")

    if conf.dump_wave:
        hlr_utils.write_file(
            conf.output,
            "text/Spec",
            dp_som5,
            output_ext="pxl",
            extra_tag=dataset_type,
            verbose=conf.verbose,
            data_ext=conf.ext_replacement,
            path_replacement=conf.path_replacement,
            message="pixel wavelength information",
        )
    if conf.dump_mon_wave and dm_som2 is not None:
        hlr_utils.write_file(
            conf.output,
            "text/Spec",
            dm_som2,
            output_ext="mxl",
            extra_tag=dataset_type,
            verbose=conf.verbose,
            data_ext=conf.ext_replacement,
            path_replacement=conf.path_replacement,
            message="monitor wavelength information",
        )

    del dp_som4, dm_som1

    # Step 7: Efficiency correct monitor
    if conf.verbose and dm_som2 is not None and not conf.no_mon_effc:
        print "Efficiency correct monitor data"

    if t is not None:
        t.getTime(False)

    if not conf.no_mon_effc:
        dm_som3 = dr_lib.feff_correct_mon(dm_som2)
    else:
        dm_som3 = dm_som2

    if t is not None and dm_som2 is not None and not conf.no_mon_effc:
        t.getTime(msg="After efficiency correcting monitor ")

    if conf.dump_mon_effc and not conf.no_mon_effc and dm_som3 is not None:
        hlr_utils.write_file(
            conf.output,
            "text/Spec",
            dm_som3,
            output_ext="mel",
            extra_tag=dataset_type,
            verbose=conf.verbose,
            data_ext=conf.ext_replacement,
            path_replacement=conf.path_replacement,
            message="monitor wavelength information " + "(efficiency)",
        )

    del dm_som2

    # Step 8: Rebin monitor axis onto detector pixel axis
    if conf.verbose and dm_som3 is not None:
        print "Rebin monitor axis to detector pixel axis"

    if t is not None:
        t.getTime(False)

    dm_som4 = dr_lib.rebin_monitor(dm_som3, dp_som5)

    if t is not None and dm_som4 is not None:
        t.getTime(msg="After rebinning monitor ")

    del dm_som3

    if conf.dump_mon_rebin and dm_som4 is not None:
        hlr_utils.write_file(
            conf.output,
            "text/Spec",
            dm_som4,
            output_ext="mrl",
            extra_tag=dataset_type,
            verbose=conf.verbose,
            data_ext=conf.ext_replacement,
            path_replacement=conf.path_replacement,
            message="monitor wavelength information " + "(rebinned)",
        )

    # The lambda-dependent background is only done on sample data (aka data)
    # for the BSS instrument at the SNS
    if conf.inst == "BSS" and conf.ldb_const is not None and dataset_type == "data":
        # Step 9: Convert chopper center wavelength to TOF center
        if conf.verbose:
            print "Converting chopper center wavelength to TOF"

        if t is not None:
            t.getTime(False)

        tof_center = dr_lib.convert_single_to_list(
            "initial_wavelength_igs_lin_time_zero_to_tof", conf.chopper_lambda_cent.toValErrTuple(), dp_som5
        )

        # Step 10: Calculate beginning and end of detector TOF spectrum
        if conf.verbose:
            print "Calculating beginning and ending TOF ranges"

        half_inv_chop_freq = 0.5 / conf.chopper_freq.toValErrTuple()[0]
        # Above is in seconds, need microseconds
        half_inv_chop_freq *= 1.0e6

        tof_begin = common_lib.sub_ncerr(tof_center, (half_inv_chop_freq, 0.0))
        tof_end = common_lib.add_ncerr(tof_center, (half_inv_chop_freq, 0.0))

        # Step 11: Convert TOF_begin and TOF_end to wavelength
        if conf.verbose:
            print "Converting TOF_begin and TOF_end to wavelength"

        # Check for time-zero slope information
        try:
            tz_slope = conf.time_zero_slope.toValErrTuple()
        except AttributeError:
            tz_slope = (0.0, 0.0)

        # Check for time-zero offset information
        try:
            tz_offset = conf.time_zero_offset.toValErrTuple()
        except AttributeError:
            tz_offset = (0.0, 0.0)

        l_begin = common_lib.tof_to_initial_wavelength_igs_lin_time_zero(
            tof_begin, time_zero_slope=tz_slope, time_zero_offset=tz_offset, iobj=dp_som5, run_filter=False
        )
        l_end = common_lib.tof_to_initial_wavelength_igs_lin_time_zero(
            tof_end, time_zero_slope=tz_slope, time_zero_offset=tz_offset, iobj=dp_som5, run_filter=False
        )

        # Step 12: tof-least-bkg to lambda-least-bkg
        if conf.verbose:
            print "Converting TOF least background to wavelength"

        lambda_least_bkg = dr_lib.convert_single_to_list(
            "tof_to_initial_wavelength_igs_lin_time_zero", conf.tof_least_bkg.toValErrTuple(), dp_som5
        )

        if t is not None:
            t.getTime(msg="After converting boundary positions ")

        # Step 13: Create lambda-dependent background spectrum
        if conf.verbose:
            print "Creating lambda-dependent background spectra"

        if t is not None:
            t.getTime(False)

        ldb_som = dr_lib.shift_spectrum(dm_som4, lambda_least_bkg, l_begin, l_end, conf.ldb_const.getValue())

        if t is not None:
            t.getTime(msg="After creating lambda-dependent background " + "spectra ")

        # Step 14: Subtract lambda-dependent background from sample data
        if conf.verbose:
            print "Subtracting lambda-dependent background from data"

        if t is not None:
            t.getTime(False)

        dp_som6 = common_lib.sub_ncerr(dp_som5, ldb_som)

        if t is not None:
            t.getTime(msg="After subtracting lambda-dependent background " + "from data ")
    else:
        dp_som6 = dp_som5

    del dp_som5

    # Step 15: Normalize data by monitor
    if conf.verbose and dm_som4 is not None:
        print "Normalizing data by monitor"

    if t is not None:
        t.getTime(False)

    if dm_som4 is not None:
        dp_som7 = common_lib.div_ncerr(dp_som6, dm_som4)

        if t is not None:
            t.getTime(msg="After normalizing data by monitor ")
    else:
        dp_som7 = dp_som6

    if conf.dump_wave_mnorm:
        dp_som7_1 = dr_lib.sum_all_spectra(dp_som7, rebin_axis=conf.lambda_bins.toNessiList())

        write_message = "combined pixel wavelength information"
        if dm_som4 is not None:
            write_message += " (monitor normalized)"

        hlr_utils.write_file(
            conf.output,
            "text/Spec",
            dp_som7_1,
            output_ext="pml",
            extra_tag=dataset_type,
            verbose=conf.verbose,
            data_ext=conf.ext_replacement,
            path_replacement=conf.path_replacement,
            message=write_message,
        )
        del dp_som7_1

    del dm_som4, dp_som6

    return dp_som7