def test_compresses_images_specified(self): "Test function compresses images with filename and input dir args." args = self.parser.parse_args(['test.png', '-i', self.testdir]) compress(args) result = os.listdir(self.testdir)[1] expected = 'test_compressed.png' self.assertEqual(result, expected)
def send_diagram_execute(): global now global diagram_filename now = datetime.now() if diagram_filename is "": print("Select valid type") else: compressor.compress(diagram_filename, topic_name, now) diagram_filename=""
def test_compresses_images_and_puts_in_output_dir(self): """ Test function compresses images with filename, input dir and output dir args specified. Should also create the output dir if it doesn't exist. """ args = self.parser.parse_args( ['test.png', '-i', self.testdir, '-o', self.outputdir]) compress(args) result = os.listdir(self.outputdir)[0] expected = 'test.png' self.assertEqual(result, expected)
def on_complete(self): self.cache.release(len(self.page.response)) self.page.response = self.page.partial_response self.page.partial_response = '' self.page.complete = True self.close() # start compression if len(self.page.response) > 100: response = self.page.response def on_compressed(data): if response != self.page.response: return headers = re.sub(r'(!\r)\n', '\r\n', response[:self.page.response_headers_len]) headers = re.sub(r'content-length\s*:[^\r]*\r\n', '', headers) headers = headers[:-2] + ('content-length: %i\r\ncontent-encoding: deflate\r\n\r\n' % len(data)) self.page.compressed = headers + data compress(self.loop, response[self.page.response_headers_len:], on_compressed)
def test_with_bad_filename(self): "Test function errors out with non-existant filename." with self.assertRaises(FileNotFoundError): args = self.parser.parse_args(['test_bad.png', '-i', self.testdir]) compress(args)
import sys import compressor file = sys.argv[1] try: extension = file.split('.')[1] except IndexError: print('File without extension! please enter the complete file name.') exit(0) compressor.compress(file)
from compressor import compress from wiki_converter import wiki_knml_converter import os file_name = input("Enter path of XML file:") wiki_knml_converter(file_name) file_name = file_name[:-4] + '.knml' compress(file_name) os.remove(file_name)
def compress(data): try: return compressor.compress(data) except OSError: return pycompressor.compress(data)
import torch import sys import time torch.cuda.set_device(0) a = torch.randn(22, 100, 224, 224) a = a.cuda() #print('before sending') #print(a) compressor = compressor.compressor(using_cuda=True) # warmups to amortize allocation costs c, size = compressor.compress(a) d = compressor.uncompress(c, size) del c, size, d c, size = compressor.compress(a) d = compressor.uncompress(c, size) del c, size, d # benchmark torch.cuda.synchronize() start = time.time() c, size = compressor.compress(a) torch.cuda.synchronize() end = time.time() print('Compression time cost') print(str(end - start)) #print('during sending')
from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import pandas as pd import numpy as np from compressor import compress, decompress from smoothing import smooth if __name__ == '__main__': sample_rate = 48000 silence_length = 0.4 raw_data = np.fromfile('wtf.bin', dtype=np.int8) comp_data = compress(raw_data) smooth_data = smooth(comp_data, int(sample_rate * silence_length)) # print(list(filter(lambda x: x > int(sample_rate * silence_length), zeros))) # print(list(filter(lambda x: x > int(sample_rate * silence_length), ones))) # plt.figure(figsize=(13, 8)) # # ax = plt.subplot(1, 1, 1) # ax.set_title("Validation Data") # # ax.set_autoscaley_on(False) # ax.set_ylim([32, 43]) # ax.set_autoscalex_on(False) # # ax.set_xlim([-126, -112]) # plt.scatter(list(range(int(len(comp_data)))), # comp_data,
torch.cuda.synchronize() ATOMO_coding_time = time.time() - ATOMO_coding_start ATOMO_decoding_start = time.time() result = ATOMO_coder.decode(code) torch.cuda.synchronize() ATOMO_decoding_time = time.time() - ATOMO_decoding_start ATOMO_time = time.time() - ATOMO_start #Signum torch.cuda.synchronize() Signum_start = time.time() Signum_coding_start = time.time() temp, tensor_size = compressor.compress(sample) torch.cuda.synchronize() Signum_coding_time = time.time() - Signum_coding_start Signum_decoding_start = time.time() result = compressor.uncompress(temp, tensor_size) torch.cuda.synchronize() Signum_decoding_time = time.time() - Signum_decoding_start Signum_time = time.time() - Signum_start print('---------') print('Signum_full_time', Signum_time) print('Signum_coding_time', Signum_coding_time) print('Signum_decoding_time', Signum_decoding_time)