Ejemplo n.º 1
0
    def __init__(self, A, f):
        r"""
        See ``Conic`` for full documentation.

        EXAMPLES::

            sage: Conic([1, 1, 1])
            Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2
        """
        ProjectiveConic_number_field.__init__(self, A, f)
Ejemplo n.º 2
0
    def __init__(self, A, f):
        r"""
        See ``Conic`` for full documentation.

        EXAMPLES::

            sage: Conic([1, 1, 1])
            Projective Conic Curve over Rational Field defined by x^2 + y^2 + z^2
        """
        ProjectiveConic_number_field.__init__(self, A, f)
Ejemplo n.º 3
0
    def has_rational_point(self, point = False, obstruction = False,
                           algorithm = 'default', read_cache = True):
        r"""
        Returns True if and only if ``self`` has a point defined over `\QQ`.

        If ``point`` and ``obstruction`` are both False (default), then
        the output is a boolean ``out`` saying whether ``self`` has a
        rational point.

        If ``point`` or ``obstruction`` is True, then the output is
        a pair ``(out, S)``, where ``out`` is as above and the following
        holds:

         - if ``point`` is True and ``self`` has a rational point,
           then ``S`` is a rational point,

         - if ``obstruction`` is True and ``self`` has no rational point,
           then ``S`` is a prime such that no rational point exists
           over the completion at ``S`` or `-1` if no point exists over `\RR`.

        Points and obstructions are cached, whenever they are found.
        Cached information is used if and only if ``read_cache`` is True.

        ALGORITHM:

        The parameter ``algorithm``
        specifies the algorithm to be used:

         - ``'qfsolve'`` -- Use PARI/GP function ``qfsolve``

         - ``'rnfisnorm'`` -- Use PARI's function rnfisnorm
           (cannot be combined with ``obstruction = True``)

         - ``'local'`` -- Check if a local solution exists for all primes
           and infinite places of `\QQ` and apply the Hasse principle
           (cannot be combined with ``point = True``)

         - ``'default'`` -- Use ``'qfsolve'``

         - ``'magma'`` (requires Magma to be installed) --
           delegates the task to the Magma computer algebra
           system.

        EXAMPLES::

            sage: C = Conic(QQ, [1, 2, -3])
            sage: C.has_rational_point(point = True)
            (True, (1 : 1 : 1))
            sage: D = Conic(QQ, [1, 3, -5])
            sage: D.has_rational_point(point = True)
            (False, 3)
            sage: P.<X,Y,Z> = QQ[]
            sage: E = Curve(X^2 + Y^2 + Z^2); E
            Projective Conic Curve over Rational Field defined by X^2 + Y^2 + Z^2
            sage: E.has_rational_point(obstruction = True)
            (False, -1)

        The following would not terminate quickly with
        ``algorithm = 'rnfisnorm'`` ::

            sage: C = Conic(QQ, [1, 113922743, -310146482690273725409])
            sage: C.has_rational_point(point = True)
            (True, (-76842858034579/5424 : -5316144401/5424 : 1))
            sage: C.has_rational_point(algorithm = 'local', read_cache = False)
            True
            sage: C.has_rational_point(point=True, algorithm='magma', read_cache=False) # optional - magma
            (True, (30106379962113/7913 : 12747947692/7913 : 1))

        TESTS:

        Create a bunch of conics over `\QQ`, check if ``has_rational_point`` runs without errors
        and returns consistent answers for all algorithms. Check if all points returned are valid. ::

            sage: l = Sequence(cartesian_product_iterator([[-1, 0, 1] for i in range(6)]))
            sage: c = [Conic(QQ, a) for a in l if a != [0,0,0] and a != (0,0,0,0,0,0)]
            sage: d = []
            sage: d = [[C]+[C.has_rational_point(algorithm = algorithm, read_cache = False, obstruction = (algorithm != 'rnfisnorm'), point = (algorithm != 'local')) for algorithm in ['local', 'qfsolve', 'rnfisnorm']] for C in c[::10]] # long time: 7 seconds
            sage: assert all([e[1][0] == e[2][0] and e[1][0] == e[3][0] for e in d])
            sage: assert all([e[0].defining_polynomial()(Sequence(e[i][1])) == 0 for e in d for i in [2,3] if e[1][0]])
        """
        if read_cache:
            if self._rational_point is not None:
                if point or obstruction:
                    return True, self._rational_point
                else:
                    return True
            if self._local_obstruction is not None:
                if point or obstruction:
                    return False, self._local_obstruction
                else:
                    return False
            if (not point) and self._finite_obstructions == [] and \
               self._infinite_obstructions == []:
                if obstruction:
                    return True, None
                return True
        if self.has_singular_point():
            if point:
                return self.has_singular_point(point = True)
            if obstruction:
                return True, None
            return True
        if algorithm == 'default' or algorithm == 'qfsolve':
            M = self.symmetric_matrix()
            M *= lcm([ t.denominator() for t in M.list() ])
            pt = qfsolve(M)
            if pt in ZZ:
                if self._local_obstruction is None:
                    self._local_obstruction = pt
                if point or obstruction:
                    return False, pt
                return False
            pt = self.point([pt[0], pt[1], pt[2]])
            if point or obstruction:
                return True, pt
            return True
        ret = ProjectiveConic_number_field.has_rational_point( \
                                           self, point = point, \
                                           obstruction = obstruction, \
                                           algorithm = algorithm, \
                                           read_cache = read_cache)
        if point or obstruction:
            if is_RingHomomorphism(ret[1]):
                ret[1] = -1
        return ret
Ejemplo n.º 4
0
def Conic(base_field, F=None, names=None, unique=True):
    r"""
    Return the plane projective conic curve defined by ``F``
    over ``base_field``.
    
    The input form ``Conic(F, names=None)`` is also accepted,
    in which case the fraction field of the base ring of ``F``
    is used as base field.

    INPUT:
    
    - ``base_field`` -- The base field of the conic.
    
    - ``names`` -- a list, tuple, or comma separated string
      of three variable names specifying the names
      of the coordinate functions of the ambient
      space `\Bold{P}^3`. If not specified or read
      off from ``F``, then this defaults to ``'x,y,z'``.

    - ``F`` -- a polynomial, list, matrix, ternary quadratic form,
      or list or tuple of 5 points in the plane.
                   
                   If ``F`` is a polynomial or quadratic form,
                   then the output is the curve in the projective plane
                   defined by ``F = 0``.

                   If ``F`` is a polynomial, then it must be a polynomial
                   of degree at most 2 in 2 variables, or a homogeneous
                   polynomial in of degree 2 in 3 variables.
                   
                   If ``F`` is a matrix, then the output is the zero locus
                   of `(x,y,z) F (x,y,z)^t`.
    
                   If ``F`` is a list of coefficients, then it has
                   length 3 or 6 and gives the coefficients of
                   the monomials `x^2, y^2, z^2` or all 6 monomials
                   `x^2, xy, xz, y^2, yz, z^2` in lexicographic order.

                   If ``F`` is a list of 5 points in the plane, then the output
                   is a conic through those points.
      
    - ``unique`` -- Used only if ``F`` is a list of points in the plane.
      If the conic through the points is not unique, then
      raise ``ValueError`` if and only if ``unique`` is True
                    
    OUTPUT:
    
    A plane projective conic curve defined by ``F`` over a field.
    
    EXAMPLES:
    
    Conic curves given by polynomials ::

        sage: X,Y,Z = QQ['X,Y,Z'].gens()
        sage: Conic(X^2 - X*Y + Y^2 - Z^2)
        Projective Conic Curve over Rational Field defined by X^2 - X*Y + Y^2 - Z^2
        sage: x,y = GF(7)['x,y'].gens()
        sage: Conic(x^2 - x + 2*y^2 - 3, 'U,V,W')
        Projective Conic Curve over Finite Field of size 7 defined by U^2 + 2*V^2 - U*W - 3*W^2

    Conic curves given by matrices ::

        sage: Conic(matrix(QQ, [[1, 2, 0], [4, 0, 0], [7, 0, 9]]), 'x,y,z')
        Projective Conic Curve over Rational Field defined by x^2 + 6*x*y + 7*x*z + 9*z^2

        sage: x,y,z = GF(11)['x,y,z'].gens()
        sage: C = Conic(x^2+y^2-2*z^2); C
        Projective Conic Curve over Finite Field of size 11 defined by x^2 + y^2 - 2*z^2
        sage: Conic(C.symmetric_matrix(), 'x,y,z')
        Projective Conic Curve over Finite Field of size 11 defined by x^2 + y^2 - 2*z^2

    Conics given by coefficients ::
    
        sage: Conic(QQ, [1,2,3])
        Projective Conic Curve over Rational Field defined by x^2 + 2*y^2 + 3*z^2
        sage: Conic(GF(7), [1,2,3,4,5,6], 'X')
        Projective Conic Curve over Finite Field of size 7 defined by X0^2 + 2*X0*X1 - 3*X1^2 + 3*X0*X2 - 2*X1*X2 - X2^2
    
    The conic through a set of points ::

        sage: C = Conic(QQ, [[10,2],[3,4],[-7,6],[7,8],[9,10]]); C
        Projective Conic Curve over Rational Field defined by x^2 + 13/4*x*y - 17/4*y^2 - 35/2*x*z + 91/4*y*z - 37/2*z^2
        sage: C.rational_point()
        (10 : 2 : 1)
        sage: C.point([3,4])
        (3 : 4 : 1)

        sage: a=AffineSpace(GF(13),2)
        sage: Conic([a([x,x^2]) for x in range(5)])
        Projective Conic Curve over Finite Field of size 13 defined by x^2 - y*z
    """
    if not (is_IntegralDomain(base_field) or base_field == None):
        if names is None:
            names = F
        F = base_field
        base_field = None
    if isinstance(F, (list,tuple)):
        if len(F) == 1:
            return Conic(base_field, F[0], names)
        if names == None:
            names = 'x,y,z'
        if len(F) == 5:
            L=[]
            for f in F:
                if isinstance(f, SchemeMorphism_point_affine):
                    C = Sequence(f, universe = base_field)
                    if len(C) != 2:
                        raise TypeError, "points in F (=%s) must be planar"%F
                    C.append(1)
                elif isinstance(f, SchemeMorphism_point_projective_field):
                    C = Sequence(f, universe = base_field)
                elif isinstance(f, (list, tuple)):
                    C = Sequence(f, universe = base_field)
                    if len(C) == 2:
                        C.append(1)
                else:
                    raise TypeError, "F (=%s) must be a sequence of planar " \
                                      "points" % F
                if len(C) != 3:
                    raise TypeError, "points in F (=%s) must be planar" % F
                P = C.universe()
                if not is_IntegralDomain(P):
                    raise TypeError, "coordinates of points in F (=%s) must " \
                                     "be in an integral domain" % F
                L.append(Sequence([C[0]**2, C[0]*C[1], C[0]*C[2], C[1]**2,
                                   C[1]*C[2], C[2]**2], P.fraction_field()))
            M=Matrix(L)
            if unique and M.rank() != 5:
                raise ValueError, "points in F (=%s) do not define a unique " \
                                   "conic" % F
            con = Conic(base_field, Sequence(M.right_kernel().gen()), names)
            con.point(F[0])
            return con
        F = Sequence(F, universe = base_field)
        base_field = F.universe().fraction_field()
        temp_ring = PolynomialRing(base_field, 3, names)
        (x,y,z) = temp_ring.gens()
        if len(F) == 3:
            return Conic(F[0]*x**2 + F[1]*y**2 + F[2]*z**2)
        if len(F) == 6:
            return Conic(F[0]*x**2 + F[1]*x*y + F[2]*x*z + F[3]*y**2 + \
                         F[4]*y*z + F[5]*z**2)
        raise TypeError, "F (=%s) must be a sequence of 3 or 6" \
                         "coefficients" % F
    if is_QuadraticForm(F):
        F = F.matrix()
    if is_Matrix(F) and F.is_square() and F.ncols() == 3:
        if names == None:
            names = 'x,y,z'
        temp_ring = PolynomialRing(F.base_ring(), 3, names)
        F = vector(temp_ring.gens()) * F * vector(temp_ring.gens())

    if not is_MPolynomial(F):
        raise TypeError, "F (=%s) must be a three-variable polynomial or " \
                         "a sequence of points or coefficients" % F

    if F.total_degree() != 2:
        raise TypeError, "F (=%s) must have degree 2" % F

    if base_field == None:
        base_field = F.base_ring()
    if not is_IntegralDomain(base_field):
        raise ValueError, "Base field (=%s) must be a field" % base_field
    base_field = base_field.fraction_field()
    if names == None:
        names = F.parent().variable_names()
    pol_ring = PolynomialRing(base_field, 3, names)

    if F.parent().ngens() == 2:
        (x,y,z) = pol_ring.gens()
        F = pol_ring(F(x/z,y/z)*z**2)    

    if F == 0:
        raise ValueError, "F must be nonzero over base field %s" % base_field

    if F.total_degree() != 2:
        raise TypeError, "F (=%s) must have degree 2 over base field %s" % \
                          (F, base_field)

    if F.parent().ngens() == 3:
        P2 = ProjectiveSpace(2, base_field, names)
        if is_PrimeFiniteField(base_field):
            return ProjectiveConic_prime_finite_field(P2, F)
        if is_FiniteField(base_field):
            return ProjectiveConic_finite_field(P2, F)
        if is_RationalField(base_field):
            return ProjectiveConic_rational_field(P2, F)
        if is_NumberField(base_field):
            return ProjectiveConic_number_field(P2, F)
        return ProjectiveConic_field(P2, F)

    raise TypeError, "Number of variables of F (=%s) must be 2 or 3" % F
Ejemplo n.º 5
0
    def has_rational_point(self,
                           point=False,
                           obstruction=False,
                           algorithm='default',
                           read_cache=True):
        r"""
        Returns True if and only if ``self`` has a point defined over `\QQ`.

        If ``point`` and ``obstruction`` are both False (default), then
        the output is a boolean ``out`` saying whether ``self`` has a
        rational point.

        If ``point`` or ``obstruction`` is True, then the output is
        a pair ``(out, S)``, where ``out`` is as above and the following
        holds:

         - if ``point`` is True and ``self`` has a rational point,
           then ``S`` is a rational point,

         - if ``obstruction`` is True and ``self`` has no rational point,
           then ``S`` is a prime such that no rational point exists
           over the completion at ``S`` or `-1` if no point exists over `\RR`.

        Points and obstructions are cached, whenever they are found.
        Cached information is used if and only if ``read_cache`` is True.

        ALGORITHM:

        The parameter ``algorithm``
        specifies the algorithm to be used:

         - ``'qfsolve'`` -- Use PARI/GP function ``qfsolve``

         - ``'rnfisnorm'`` -- Use PARI's function rnfisnorm
           (cannot be combined with ``obstruction = True``)

         - ``'local'`` -- Check if a local solution exists for all primes
           and infinite places of `\QQ` and apply the Hasse principle
           (cannot be combined with ``point = True``)

         - ``'default'`` -- Use ``'qfsolve'``

         - ``'magma'`` (requires Magma to be installed) --
           delegates the task to the Magma computer algebra
           system.

        EXAMPLES::

            sage: C = Conic(QQ, [1, 2, -3])
            sage: C.has_rational_point(point = True)
            (True, (1 : 1 : 1))
            sage: D = Conic(QQ, [1, 3, -5])
            sage: D.has_rational_point(point = True)
            (False, 3)
            sage: P.<X,Y,Z> = QQ[]
            sage: E = Curve(X^2 + Y^2 + Z^2); E
            Projective Conic Curve over Rational Field defined by X^2 + Y^2 + Z^2
            sage: E.has_rational_point(obstruction = True)
            (False, -1)

        The following would not terminate quickly with
        ``algorithm = 'rnfisnorm'`` ::

            sage: C = Conic(QQ, [1, 113922743, -310146482690273725409])
            sage: C.has_rational_point(point = True)
            (True, (-76842858034579/5424 : -5316144401/5424 : 1))
            sage: C.has_rational_point(algorithm = 'local', read_cache = False)
            True
            sage: C.has_rational_point(point=True, algorithm='magma', read_cache=False) # optional - magma
            (True, (30106379962113/7913 : 12747947692/7913 : 1))

        TESTS:

        Create a bunch of conics over `\QQ`, check if ``has_rational_point`` runs without errors
        and returns consistent answers for all algorithms. Check if all points returned are valid. ::

            sage: l = Sequence(cartesian_product_iterator([[-1, 0, 1] for i in range(6)]))
            sage: c = [Conic(QQ, a) for a in l if a != [0,0,0] and a != (0,0,0,0,0,0)]
            sage: d = []
            sage: d = [[C]+[C.has_rational_point(algorithm = algorithm, read_cache = False, obstruction = (algorithm != 'rnfisnorm'), point = (algorithm != 'local')) for algorithm in ['local', 'qfsolve', 'rnfisnorm']] for C in c[::10]] # long time: 7 seconds
            sage: assert all([e[1][0] == e[2][0] and e[1][0] == e[3][0] for e in d])
            sage: assert all([e[0].defining_polynomial()(Sequence(e[i][1])) == 0 for e in d for i in [2,3] if e[1][0]])
        """
        if read_cache:
            if self._rational_point is not None:
                if point or obstruction:
                    return True, self._rational_point
                else:
                    return True
            if self._local_obstruction is not None:
                if point or obstruction:
                    return False, self._local_obstruction
                else:
                    return False
            if (not point) and self._finite_obstructions == [] and \
               self._infinite_obstructions == []:
                if obstruction:
                    return True, None
                return True
        if self.has_singular_point():
            if point:
                return self.has_singular_point(point=True)
            if obstruction:
                return True, None
            return True
        if algorithm == 'default' or algorithm == 'qfsolve':
            M = self.symmetric_matrix()
            M *= lcm([t.denominator() for t in M.list()])
            pt = qfsolve(M)
            if pt in ZZ:
                if self._local_obstruction is None:
                    self._local_obstruction = pt
                if point or obstruction:
                    return False, pt
                return False
            pt = self.point([pt[0], pt[1], pt[2]])
            if point or obstruction:
                return True, pt
            return True
        ret = ProjectiveConic_number_field.has_rational_point( \
                                           self, point = point, \
                                           obstruction = obstruction, \
                                           algorithm = algorithm, \
                                           read_cache = read_cache)
        if point or obstruction:
            if is_RingHomomorphism(ret[1]):
                ret[1] = -1
        return ret