Ejemplo n.º 1
0
from config.defaults import Experiment, SiMVC, CNN, DDC, Fusion, Loss, Dataset, CoMVC, Optimizer


coil = Experiment(
    dataset_config=Dataset(name="coil"),
    model_config=SiMVC(
        backbone_configs=(
            CNN(input_size=(1, 128, 128)),
            CNN(input_size=(1, 128, 128)),
            CNN(input_size=(1, 128, 128)),
        ),
        fusion_config=Fusion(method="weighted_mean", n_views=3),
        cm_config=DDC(n_clusters=20),
        loss_config=Loss(
            funcs="ddc_1|ddc_2|ddc_3",
        ),
        optimizer_config=Optimizer()
    ),
    n_epochs=100,
)

coil_contrast = Experiment(
    dataset_config=Dataset(name="coil"),
    model_config=CoMVC(
        backbone_configs=(
            CNN(input_size=(1, 128, 128)),
            CNN(input_size=(1, 128, 128)),
            CNN(input_size=(1, 128, 128)),
        ),
        fusion_config=Fusion(method="weighted_mean", n_views=3),
        projector_config=None,
Ejemplo n.º 2
0
from config.defaults import Experiment, Dataset, SiMVC, DDC, Fusion, MLP, Loss, CoMVC, Optimizer

voc = Experiment(
    dataset_config=Dataset(name="voc"),
    model_config=SiMVC(
        backbone_configs=(
            MLP(input_size=(512,)),
            MLP(input_size=(399,)),
        ),
        fusion_config=Fusion(method="weighted_mean", n_views=2),
        cm_config=DDC(n_clusters=20),
        loss_config=Loss(
            funcs="ddc_1|ddc_2|ddc_3",
        ),
        optimizer_config=Optimizer(learning_rate=1e-3, scheduler_step_size=50, scheduler_gamma=0.1)
    ),
)

voc_contrast = Experiment(
    dataset_config=Dataset(name="voc"),
    model_config=CoMVC(
        backbone_configs=(
            MLP(input_size=(512,)),
            MLP(input_size=(399,)),
        ),
        projector_config=None,
        fusion_config=Fusion(method="weighted_mean", n_views=2),
        cm_config=DDC(n_clusters=20),
        loss_config=Loss(
            funcs="ddc_1|ddc_2|ddc_3|contrast",
        ),
Ejemplo n.º 3
0
from config.defaults import Experiment, Dataset, SiMVC, MLP, DDC, Fusion, Loss, CoMVC

blobs_overlap = Experiment(
    dataset_config=Dataset(name="blobs_overlap"),
    model_config=SiMVC(
        backbone_configs=(
            MLP(layers=[32, 32, 32], input_size=(2, )),
            MLP(layers=[32, 32, 32], input_size=(2, )),
        ),
        fusion_config=Fusion(method="weighted_mean", n_views=2),
        cm_config=DDC(n_clusters=3),
        loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3", ),
    ),
    n_runs=1,
    n_epochs=10,
)

blobs_overlap_contrast = Experiment(
    dataset_config=Dataset(name="blobs_overlap"),
    model_config=CoMVC(backbone_configs=(
        MLP(layers=[32, 32, 32], input_size=(2, )),
        MLP(layers=[32, 32, 32], input_size=(2, )),
    ),
                       fusion_config=Fusion(method="weighted_mean", n_views=2),
                       projector_config=None,
                       cm_config=DDC(n_clusters=3),
                       loss_config=Loss(funcs="ddc_1|ddc_2|ddc_3|contrast", )),
    n_runs=1,
)

blobs_overlap_5 = Experiment(
Ejemplo n.º 4
0
from config.defaults import Experiment, Dataset, SiMVC, DDC, Fusion, MLP, Loss, CoMVC, Optimizer


rgbd = Experiment(
    dataset_config=Dataset(name="rgbd"),
    model_config=SiMVC(
        backbone_configs=(
            MLP(input_size=(2048,)),
            MLP(input_size=(300,)),
        ),
        fusion_config=Fusion(method="weighted_mean", n_views=2),
        cm_config=DDC(n_clusters=13),
        loss_config=Loss(
            funcs="ddc_1|ddc_2|ddc_3",
        )
    ),
)

rgbd_contrast = Experiment(
    dataset_config=Dataset(name="rgbd"),
    model_config=CoMVC(
        backbone_configs=(
            MLP(input_size=(2048,)),
            MLP(input_size=(300,)),
        ),
        fusion_config=Fusion(method="weighted_mean", n_views=2),
        projector_config=None,
        cm_config=DDC(n_clusters=13),
        loss_config=Loss(
            funcs="ddc_1|ddc_2|ddc_3|contrast",
        ),