Ejemplo n.º 1
0
def test_iterate_directories():
    directory1 = data_path("files/d1")
    directory2 = data_path("files/d2")

    files = list(iterate_directories((directory1, directory2), "foo"))
    assert len(files) == 5
    files = list(iterate_directories((directory1, directory2), "foo", "e"))
    assert len(files) == 3
    files = list(iterate_directories((directory1, directory2), "baz"))
    assert len(files) == 0
Ejemplo n.º 2
0
def test_iterate_files():
    directory = data_path("files/d1")
    assert len(list(iterate_files(directory, "foo"))) == 3
    assert len(list(iterate_files(directory, ".foo"))) == 3
    assert len(list(iterate_files(directory, "foo", "e"))) == 2
    assert len(list(iterate_files(directory, "foo", "a"))) == 1
    assert len(list(iterate_files(directory, "bar"))) == 0
Ejemplo n.º 3
0
def test_load_dataset():
    dataset_path = os.path.abspath(data_path("dataset"))
    df = load_dataset(dataset_path, ".jpeg")
    assert sorted(df["path"]) == [
        os.path.join(dataset_path, f"{p}.jpeg") for p in ("1", "2", "3")
    ]
    df = load_dataset(dataset_path, ".jpeg", "1")
    assert sorted(df["path"]) == [os.path.join(dataset_path, "1.jpeg")]
Ejemplo n.º 4
0
def test_overlay_masks():
    masks = [
        load_image(data_path(f"segmentation/color_masks/mask-{i}.png"))
        for i in range(4)
    ]
    background = np.zeros((100, 100, 3), dtype=np.uint8)
    background[:, :] = (50, 50, 50)

    check_image_equality(
        overlay_masks(background, masks, alpha=1.0),
        data_path("segmentation/color_masks/overlay-alpha-1.0.png"),
        delta=1,
    )
    check_image_equality(
        overlay_masks(background, masks, alpha=0.5),
        data_path("segmentation/color_masks/overlay-alpha-0.5.png"),
        delta=1,
    )
Ejemplo n.º 5
0
def test_load_voc_xml():
    annotated = voc_to_annotated_image(data_path("example.xml"))
    width, height = annotated.width, annotated.height
    assert width == 500
    assert height == 375

    assert annotated.annotations[0].class_name == "dog"
    assert annotated.annotations[0].confidence is None
    assert annotated.annotations[0].type == AnnotationType.GROUND_TRUTH
    assert annotated.annotations[0].bbox.denormalize(
        width, height).to_int().as_tuple() == (144, 255, 90, 201)
    assert annotated.annotations[1].class_name == "dog"
    assert annotated.annotations[1].bbox.denormalize(
        width, height).to_int().as_tuple() == (264, 380, 73, 180)
Ejemplo n.º 6
0
def test_color_bitmap_masks():
    mask1 = np.zeros((100, 100), dtype=np.uint8)
    mask1[10:30, 20:40] = 255

    mask2 = np.zeros((100, 100), dtype=np.uint8)
    mask2[35:50, 40:60] = 255

    mask3 = np.zeros((100, 100), dtype=np.uint8)
    mask3[35:50, 70:90] = 255

    mask4 = np.zeros((100, 100), dtype=np.uint8)
    mask4[70:95, 10:80] = 255

    palette = [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0)]
    colored_masks = color_bitmap_masks((mask1, mask2, mask3, mask4), palette)
    for (index, mask) in enumerate(colored_masks):
        check_image_equality(
            mask, data_path(f"segmentation/color_masks/mask-{index}.png"))
Ejemplo n.º 7
0
def test_load_image_rgb():
    img = load_image(data_path("example.jpeg"))
    assert img.shape == (375, 500, 3)
    assert np.max(img) > 1.0
Ejemplo n.º 8
0
def test_load_image_normalize():
    img = load_image(data_path("example.jpeg"), normalize=True)
    assert np.max(img) <= 1.0
Ejemplo n.º 9
0
def test_load_image_resize():
    img = load_image(data_path("example.jpeg"), target_size=(224, 224))
    assert img.shape == (224, 224, 3)
Ejemplo n.º 10
0
def test_load_image_grayscale():
    img = load_image(data_path("example.jpeg"), color_mode="grayscale")
    assert img.shape == (375, 500)
Ejemplo n.º 11
0
def test_load_image_bgr():
    img2 = load_image(data_path("example.jpeg"), color_mode="bgr")
    check_image_equality(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB),
                         data_path("example.jpeg"))