Ejemplo n.º 1
0
def run(_run, image_shape, data_dir, train_shuffle, dataset_train_seed,
        valid_shuffle, dataset_valid_seed, classes, architecture, weights,
        batch_size, last_base_layer, use_gram_matrix, pooling, dense_layers,
        device, opt_params, dropout_p, resuming_from_ckpt_file, ckpt_file,
        steps_per_epoch, epochs, validation_steps, workers,
        use_multiprocessing, initial_epoch, early_stop_patience,
        tensorboard_tag, first_trainable_layer, first_reset_layer,
        class_weight):
    report_dir = _run.observers[0].dir

    g = ImageDataGenerator(horizontal_flip=True,
                           vertical_flip=True,
                           samplewise_center=True,
                           samplewise_std_normalization=True,
                           zoom_range=.2,
                           rotation_range=.2,
                           height_shift_range=.2,
                           width_shift_range=.2,
                           fill_mode='reflect',
                           preprocessing_function=None)

    train_data = g.flow_from_directory(os.path.join(data_dir, 'train'),
                                       target_size=image_shape[:2],
                                       classes=classes,
                                       batch_size=batch_size,
                                       shuffle=train_shuffle,
                                       seed=dataset_train_seed)

    valid_data = g.flow_from_directory(os.path.join(data_dir, 'valid'),
                                       target_size=image_shape[:2],
                                       classes=classes,
                                       batch_size=batch_size,
                                       shuffle=valid_shuffle,
                                       seed=dataset_valid_seed)

    if class_weight == 'balanced':
        class_weight = get_class_weights(train_data.classes)

    if steps_per_epoch is None:
        steps_per_epoch = ceil(train_data.n / batch_size)
    if validation_steps is None:
        validation_steps = ceil(valid_data.n / batch_size)

    with tf.device(device):
        print('building...')
        model = build_model(image_shape,
                            architecture=architecture,
                            weights=weights,
                            dropout_p=dropout_p,
                            classes=train_data.num_classes,
                            last_base_layer=last_base_layer,
                            use_gram_matrix=use_gram_matrix,
                            pooling=pooling,
                            dense_layers=dense_layers)

        layer_names = [l.name for l in model.layers]

        if first_trainable_layer:
            if first_trainable_layer not in layer_names:
                raise ValueError('%s is not a layer in the model: %s' %
                                 (first_trainable_layer, layer_names))

            _trainable = False
            for layer in model.layers:
                if layer.name == first_trainable_layer:
                    _trainable = True
                layer.trainable = _trainable
            del _trainable

        model.compile(optimizer=optimizers.Adam(**opt_params),
                      metrics=['accuracy'],
                      loss='categorical_crossentropy')

        if resuming_from_ckpt_file:
            print('re-loading weights...')
            model.load_weights(resuming_from_ckpt_file)

        if first_reset_layer:
            if first_reset_layer not in layer_names:
                raise ValueError('%s is not a layer in the model: %s' %
                                 (first_reset_layer, layer_names))
            print('first layer to have its weights reset:', first_reset_layer)
            random_model = build_model(image_shape,
                                       architecture=architecture,
                                       weights=None,
                                       dropout_p=dropout_p,
                                       classes=train_data.num_class,
                                       last_base_layer=last_base_layer,
                                       use_gram_matrix=use_gram_matrix,
                                       dense_layers=dense_layers)
            _reset = False
            for layer, random_layer in zip(model.layers, random_model.layers):
                if layer.name == first_reset_layer:
                    _reset = True
                if _reset:
                    layer.set_weights(random_layer.get_weights())
            del random_model

            model.compile(optimizer=optimizers.Adam(**opt_params),
                          metrics=['accuracy'],
                          loss='categorical_crossentropy')

        print('training from epoch %i...' % initial_epoch)
        try:
            model.fit_generator(
                train_data,
                steps_per_epoch=steps_per_epoch,
                epochs=epochs,
                verbose=2,
                validation_data=valid_data,
                validation_steps=validation_steps,
                initial_epoch=initial_epoch,
                class_weight=class_weight,
                workers=workers,
                use_multiprocessing=use_multiprocessing,
                callbacks=[
                    # callbacks.LearningRateScheduler(lambda epoch: .5 ** (epoch // 10) * opt_params['lr']),
                    callbacks.TerminateOnNaN(),
                    callbacks.ReduceLROnPlateau(min_lr=1e-10,
                                                patience=int(
                                                    early_stop_patience // 3)),
                    callbacks.EarlyStopping(patience=early_stop_patience),
                    callbacks.TensorBoard(os.path.join(report_dir,
                                                       tensorboard_tag),
                                          batch_size=batch_size),
                    callbacks.ModelCheckpoint(os.path.join(
                        report_dir, ckpt_file),
                                              save_best_only=True,
                                              verbose=1),
                ])
        except KeyboardInterrupt:
            print('interrupted by user')
        else:
            print('done')
Ejemplo n.º 2
0
def run(_run, data_dir, subdirectories, image_shape, train_info, batch_size,
        architecture, weights, last_base_layer, use_gram_matrix, pooling,
        device, resuming_from, workers, use_multiprocessing, outputs_meta):
    print('reading train-info...')
    outputs, name_map = load_multiple_outputs(train_info,
                                              outputs_meta,
                                              encode='sparse')

    g = ImageDataGenerator(
        horizontal_flip=True,
        vertical_flip=True,
        zoom_range=.2,
        rotation_range=90,
        height_shift_range=.2,
        width_shift_range=.2,
        fill_mode='reflect',
        preprocessing_function=get_preprocess_fn(architecture))

    train_data = MultipleOutputsDirectorySequence(
        os.path.join(data_dir, 'train'),
        outputs,
        name_map,
        g,
        batch_size=batch_size,
        target_size=image_shape[:2],
        subdirectories=subdirectories,
        shuffle=False)
    valid_data = MultipleOutputsDirectorySequence(
        os.path.join(data_dir, 'valid'),
        outputs,
        name_map,
        g,
        batch_size=batch_size,
        target_size=image_shape[:2],
        subdirectories=subdirectories,
        shuffle=False)

    with tf.device(device):
        print('building...')
        model = build_model(
            image_shape,
            architecture=architecture,
            weights=weights,
            last_base_layer=last_base_layer,
            use_gram_matrix=use_gram_matrix,
            pooling=pooling,
            include_top=True,
            classes=[o['u'] for o in outputs_meta],
            predictions_name=[o['n'] for o in outputs_meta],
            predictions_activation=[o['a'] for o in outputs_meta])

        if resuming_from:
            print('re-loading weights...')
            model.load_weights(resuming_from)

        for d in (train_data, valid_data):
            p = model.predict_generator(
                d, workers=workers, use_multiprocessing=use_multiprocessing)

            predictions = [(np.argmax(_p, axis=-1) if o['n'] != 'date' else _p)
                           for _p, o in zip(p, outputs_meta)]

            labels = [outputs[m['n']][d.classes] for m in outputs_meta]

            for n, y, p in zip(outputs, labels, predictions):
                print('Evaluating', n)
                meta = next(o for o in outputs_meta if o['n'] == n)

                if n != 'date':
                    print('accuracy:', metrics.accuracy_score(y, p))
                    print('recall-macro:',
                          metrics.recall_score(y, p, average='macro'))
                    print('f1-macro:', metrics.f1_score(y, p, average='macro'))

                    print(metrics.classification_report(y, p))
                else:
                    _s = meta['f'].named_steps['standardscaler']
                    print('standard_scaler:', _s)
                    print('mae on original space:',
                          metrics.mean_absolute_error(y, p))
                print()
Ejemplo n.º 3
0
def run(_run, image_shape, data_dir, train_shuffle, dataset_train_seed,
        valid_shuffle, dataset_valid_seed, classes, num_classes, train_info,
        architecture, weights, batch_size, last_base_layer, use_gram_matrix,
        pooling, dense_layers, device, opt_params, dropout_p, resuming_from,
        ckpt_file, steps_per_epoch, epochs, validation_steps, workers,
        use_multiprocessing, initial_epoch, early_stop_patience,
        tensorboard_tag, first_trainable_layer, first_reset_layer,
        class_weight):
    report_dir = _run.observers[0].dir

    y, fs, encoders = load_labels(train_info)
    label_map = dict(zip([os.path.splitext(f)[0] for f in fs], y))

    g = ImageDataGenerator(
        horizontal_flip=True,
        vertical_flip=True,
        zoom_range=.2,
        rotation_range=.2,
        height_shift_range=.2,
        width_shift_range=.2,
        fill_mode='reflect',
        preprocessing_function=get_preprocess_fn(architecture))

    train_data = g.flow_from_directory(os.path.join(data_dir, 'train'),
                                       target_size=image_shape[:2],
                                       classes=classes,
                                       class_mode='sparse',
                                       batch_size=batch_size,
                                       shuffle=train_shuffle,
                                       seed=dataset_train_seed)

    fs = [os.path.basename(f).split('-')[0] for f in train_data.filenames]
    train_data.classes = np.array([label_map[f] for f in fs])

    valid_data = g.flow_from_directory(os.path.join(data_dir, 'valid'),
                                       target_size=image_shape[:2],
                                       classes=classes,
                                       class_mode='sparse',
                                       batch_size=batch_size,
                                       shuffle=valid_shuffle,
                                       seed=dataset_valid_seed)

    fs = [os.path.basename(f).split('-')[0] for f in valid_data.filenames]
    valid_data.classes = np.array([label_map[f] for f in fs])

    del y, fs, encoders

    if class_weight == 'balanced':
        raise ValueError('class_weight is still a little confusing in '
                         'this multi-label problems')

    if steps_per_epoch is None:
        steps_per_epoch = ceil(train_data.n / batch_size)
    if validation_steps is None:
        validation_steps = ceil(valid_data.n / batch_size)

    with tf.device(device):
        print('building...')
        model = build_model(image_shape,
                            architecture=architecture,
                            weights=weights,
                            dropout_p=dropout_p,
                            classes=num_classes,
                            last_base_layer=last_base_layer,
                            use_gram_matrix=use_gram_matrix,
                            pooling=pooling,
                            dense_layers=dense_layers,
                            predictions_activation='sigmoid')

        layer_names = [l.name for l in model.layers]

        if first_trainable_layer:
            if first_trainable_layer not in layer_names:
                raise ValueError('%s is not a layer in the model: %s' %
                                 (first_trainable_layer, layer_names))

            _trainable = False
            for layer in model.layers:
                if layer.name == first_trainable_layer:
                    _trainable = True
                layer.trainable = _trainable
            del _trainable

        model.compile(optimizer=optimizers.Adam(**opt_params),
                      metrics=[
                          'binary_accuracy', 'categorical_accuracy',
                          'top_k_categorical_accuracy'
                      ],
                      loss='binary_crossentropy')

        if resuming_from:
            print('re-loading weights...')
            model.load_weights(resuming_from)

        if first_reset_layer:
            if first_reset_layer not in layer_names:
                raise ValueError('%s is not a layer in the model: %s' %
                                 (first_reset_layer, layer_names))
            print('first layer to have its weights reset:', first_reset_layer)
            random_model = build_model(image_shape,
                                       architecture=architecture,
                                       weights=None,
                                       dropout_p=dropout_p,
                                       classes=num_classes,
                                       last_base_layer=last_base_layer,
                                       use_gram_matrix=use_gram_matrix,
                                       dense_layers=dense_layers,
                                       predictions_activation='sigmoid')
            _reset = False
            for layer, random_layer in zip(model.layers, random_model.layers):
                if layer.name == first_reset_layer:
                    _reset = True
                if _reset:
                    layer.set_weights(random_layer.get_weights())
            del random_model

            model.compile(optimizer=optimizers.Adam(**opt_params),
                          metrics=['cateprocal_accuracy'],
                          loss='binary_crossentropy')

        print('training from epoch %i...' % initial_epoch)
        try:
            model.fit_generator(
                train_data,
                steps_per_epoch=steps_per_epoch,
                epochs=epochs,
                validation_data=valid_data,
                validation_steps=validation_steps,
                initial_epoch=initial_epoch,
                verbose=2,
                class_weight=None,
                workers=workers,
                use_multiprocessing=use_multiprocessing,
                callbacks=[
                    callbacks.ReduceLROnPlateau(min_lr=1e-10,
                                                patience=int(
                                                    early_stop_patience // 3)),
                    callbacks.EarlyStopping(patience=early_stop_patience),
                    callbacks.TensorBoard(tensorboard_tag,
                                          batch_size=batch_size),
                    callbacks.ModelCheckpoint(ckpt_file,
                                              save_best_only=True,
                                              verbose=1),
                    callbacks.TensorBoard(os.path.join(report_dir,
                                                       tensorboard_tag),
                                          batch_size=batch_size),
                    callbacks.ModelCheckpoint(os.path.join(
                        report_dir, ckpt_file),
                                              save_best_only=True,
                                              verbose=1),
                ])

        except KeyboardInterrupt:
            print('interrupted by user')
        else:
            print('done')
Ejemplo n.º 4
0
def run(dataset_seed, image_shape, batch_size, device, data_dir, output_dir,
        phases, architecture, include_base_top, include_top, o_meta, ckpt_file,
        weights, pooling, dense_layers, use_gram_matrix, last_base_layer,
        override, embedded_files_max_size, selected_layers):
    os.makedirs(output_dir, exist_ok=True)

    with tf.device(device):
        print('building model...')
        model = build_model(image_shape,
                            architecture=architecture,
                            weights=weights,
                            dropout_p=.0,
                            pooling=pooling,
                            last_base_layer=last_base_layer,
                            use_gram_matrix=use_gram_matrix,
                            dense_layers=dense_layers,
                            include_base_top=include_base_top,
                            include_top=include_top,
                            classes=[o['u'] for o in o_meta],
                            predictions_name=[o['n'] for o in o_meta],
                            predictions_activation=[o['a'] for o in o_meta])
        if ckpt_file:
            # Restore best parameters.
            print('loading weights from:', ckpt_file)
            model.load_weights(ckpt_file)

        available_layers = [l.name for l in model.layers]
        if set(selected_layers) - set(available_layers):
            print('available layers:', available_layers)
            raise ValueError('selection contains unknown layers: %s' %
                             selected_layers)

        style_features = [model.get_layer(l).output for l in selected_layers]

        if use_gram_matrix:
            gram_layer = layers.Lambda(gram_matrix,
                                       arguments=dict(norm_by_channels=False))
            style_features = [gram_layer(f) for f in style_features]

        model = Model(inputs=model.inputs, outputs=style_features)

    g = ImageDataGenerator(
        preprocessing_function=get_preprocess_fn(architecture))

    for phase in phases:
        phase_data_dir = os.path.join(data_dir, phase)
        output_file_name = os.path.join(output_dir, phase + '.%i.pickle')
        already_embedded = os.path.exists(output_file_name % 0)
        phase_exists = os.path.exists(phase_data_dir)

        if already_embedded and not override or not phase_exists:
            print('%s transformation skipped' % phase)
            continue

        # Shuffle must always be off in order to keep names consistent.
        data = g.flow_from_directory(phase_data_dir,
                                     target_size=image_shape[:2],
                                     class_mode='sparse',
                                     batch_size=batch_size,
                                     shuffle=False,
                                     seed=dataset_seed)
        print('transforming %i %s samples from %s' %
              (data.n, phase, phase_data_dir))
        part_id = 0
        samples_seen = 0
        displayed_once = False

        while samples_seen < data.n:
            z, y = {n: [] for n in selected_layers}, []
            chunk_size = 0
            chunk_start = samples_seen

            while chunk_size < embedded_files_max_size and samples_seen < data.n:
                _x, _y = next(data)

                outputs = model.predict_on_batch(_x)
                if not isinstance(outputs, list):
                    outputs = [outputs]

                chunk_size += sum(o.nbytes for o in outputs)

                for l, o in zip(selected_layers, outputs):
                    z[l].append(o)

                y.append(_y)
                samples_seen += _x.shape[0]
                chunk_p = int(100 * (samples_seen / data.n))

                if chunk_p % 10 == 0:
                    if not displayed_once:
                        print('\n%i%% (shape=%s, size=%.2f MB)' %
                              (chunk_p, _x.shape, chunk_size / 1024**2),
                              flush=True,
                              end='')
                        displayed_once = True
                else:
                    displayed_once = False
                    print('.', end='')

            for layer in selected_layers:
                z[layer] = np.concatenate(z[layer])

            with open(output_file_name % part_id, 'wb') as f:
                pickle.dump(
                    {
                        'data':
                        z,
                        'target':
                        np.concatenate(y),
                        'names':
                        np.asarray(data.filenames[chunk_start:samples_seen])
                    }, f, pickle.HIGHEST_PROTOCOL)
            part_id += 1
    print('done.')
def run(tag, data_dir, n_classes, phases, classes, data_seed,
        results_file_name, group_patches, batch_size, image_shape,
        architecture, weights, dropout_p, last_base_layer, use_gram_matrix,
        pooling, dense_layers, device, ckpt_file):
    import tensorflow as tf
    from keras import backend as K
    from keras.preprocessing.image import ImageDataGenerator
    from connoisseur.models import build_model
    from connoisseur.utils import get_preprocess_fn

    tf.logging.set_verbosity(tf.logging.ERROR)
    tf_config = tf.ConfigProto(allow_soft_placement=True)
    tf_config.gpu_options.allow_growth = True
    s = tf.Session(config=tf_config)
    K.set_session(s)

    preprocess_input = get_preprocess_fn(architecture)

    g = ImageDataGenerator(samplewise_center=True,
                           samplewise_std_normalization=True,
                           preprocessing_function=None)

    with tf.device(device):
        print('building...')
        model = build_model(image_shape,
                            architecture=architecture,
                            weights=weights,
                            dropout_p=dropout_p,
                            classes=n_classes,
                            last_base_layer=last_base_layer,
                            use_gram_matrix=use_gram_matrix,
                            pooling=pooling,
                            dense_layers=dense_layers)

        if ckpt_file:
            print('re-loading weights...')
            model.load_weights(ckpt_file)

        results = []
        for phase in phases:
            print('\n# %s evaluation' % phase)

            data = g.flow_from_directory(os.path.join(data_dir, phase),
                                         target_size=image_shape[:2],
                                         classes=classes,
                                         batch_size=batch_size,
                                         seed=data_seed,
                                         shuffle=False,
                                         class_mode='sparse')

            steps = ceil(data.n / batch_size)

            probabilities = model.predict_generator(data, steps=steps)
            layer_results = evaluate(probabilities=probabilities,
                                     y=data.classes,
                                     names=data.filenames,
                                     tag=tag,
                                     group_patches=group_patches,
                                     phase=phase)
            layer_results['phase'] = phase
            results.append(layer_results)

    with open(results_file_name, 'w') as file:
        json.dump(results, file)
def run(image_shape, data_dir, submission_info_path, solution_path, data_seed,
        classes, architecture, weights, batch_size, last_base_layer,
        use_gram_matrix, pooling, dense_layers, device, n_classes, dropout_p,
        ckpt_file, binary_strategy, results_file_name):
    import json
    import os
    from math import ceil

    import pandas as pd
    import tensorflow as tf
    from PIL import ImageFile

    from keras import backend as K
    from keras.preprocessing.image import ImageDataGenerator
    from connoisseur.models import build_model
    from connoisseur.utils import get_preprocess_fn

    ImageFile.LOAD_TRUNCATED_IMAGES = True

    tf.logging.set_verbosity(tf.logging.ERROR)
    tf_config = tf.ConfigProto(allow_soft_placement=True)
    tf_config.gpu_options.allow_growth = True
    s = tf.Session(config=tf_config)
    K.set_session(s)

    pairs = pd.read_csv(submission_info_path, quotechar='"',
                        delimiter=',').values[:, 1:]
    y = pd.read_csv(solution_path, quotechar='"', delimiter=',').values[:, 1:]

    pairs = [[
        'unknown/' + os.path.splitext(a)[0],
        'unknown/' + os.path.splitext(b)[0]
    ] for a, b in pairs]

    preprocess_input = get_preprocess_fn(architecture)
    g = ImageDataGenerator(preprocessing_function=preprocess_input)

    with tf.device(device):
        print('building...')
        model = build_model(image_shape,
                            architecture=architecture,
                            weights=weights,
                            dropout_p=dropout_p,
                            classes=n_classes,
                            last_base_layer=last_base_layer,
                            use_gram_matrix=use_gram_matrix,
                            pooling=pooling,
                            dense_layers=dense_layers)

        if ckpt_file:
            print('re-loading weights...')
            model.load_weights(ckpt_file)

        results = []
        for phase in ['test']:
            print('\n# %s evaluation' % phase)

            data = g.flow_from_directory(os.path.join(data_dir, phase),
                                         target_size=image_shape[:2],
                                         classes=classes,
                                         batch_size=batch_size,
                                         seed=data_seed,
                                         shuffle=False)

            steps = ceil(data.n / batch_size)

            probabilities = model.predict_generator(data, steps=steps)
            del model
            K.clear_session()

            layer_results = evaluate(probabilities, y, data.filenames, pairs,
                                     binary_strategy)
            layer_results['phase'] = phase
            results.append(layer_results)

    with open(results_file_name, 'w') as file:
        json.dump(results, file)
Ejemplo n.º 7
0
def run(_run, image_shape, data_dir, classes, architecture, weights,
        last_base_layer, use_gram_matrix, pooling, dense_layers,
        saliency_method, device, dropout_p, ckpt_file, serialization_method,
        output_index):
    report_dir = _run.observers[0].dir

    tf.logging.set_verbosity(tf.logging.ERROR)
    tf_config = tf.ConfigProto(allow_soft_placement=True)
    tf_config.gpu_options.allow_growth = True
    s = tf.Session(config=tf_config)
    K.set_session(s)

    preprocess_input = get_preprocess_fn(architecture)

    if not classes:
        classes = sorted(os.listdir(data_dir))

    with tf.device(device):
        print('building...')
        model = build_model(image_shape,
                            architecture=architecture,
                            weights=weights,
                            dropout_p=dropout_p,
                            classes=1584,
                            last_base_layer=last_base_layer,
                            use_gram_matrix=use_gram_matrix,
                            pooling=pooling,
                            dense_layers=dense_layers)
        model.compile(loss='categorical_crossentropy', optimizer='adam')

        if ckpt_file:
            print('re-loading weights...')
            model.load_weights(ckpt_file)

        saliency_cls = getattr(saliency, saliency_method)
        s = saliency_cls(model=model, output_index=output_index)

        try:
            for label in classes:
                samples = os.listdir(os.path.join(data_dir, label))
                os.makedirs(os.path.join(report_dir, label), exist_ok=True)

                for sample in samples:
                    name, _ = os.path.splitext(sample)

                    x = img_to_array(
                        load_img(os.path.join(data_dir, label, sample)))
                    x = preprocess_input(x)

                    print('analyzing', name, 'with shape', x.shape)

                    if serialization_method == 'full':
                        r = s.get_mask(np.expand_dims(x, 0))[0][0]
                        print(r.shape)
                        r = np.abs(r)
                        r = np.sum(r, axis=2, keepdims=True)
                    else:
                        r = np.zeros(x.shape[:2])
                        mh, mw = [
                            floor(x.shape[i] / image_shape[i]) * image_shape[i]
                            + 1 for i in range(2)
                        ]

                        cuts = itertools.product(range(0, mh, image_shape[0]),
                                                 range(0, mw, image_shape[1]))

                        for h, w in cuts:
                            p = x[h:h + image_shape[0],
                                  w:w + image_shape[0], :]
                            if p.shape != tuple(image_shape):
                                # Don't process borders. This can be further
                                # improved by padding the input image.
                                continue

                            p = np.expand_dims(p, 0)
                            z = np.abs(s.get_mask(p))[0][0]
                            z = np.sum(z, axis=2)
                            r[h:h + image_shape[0], w:w + image_shape[0]] = z
                        r = np.expand_dims(r, 2)

                    array_to_img(x).save(
                        os.path.join(report_dir, label, name + '_o.jpg'))
                    array_to_img(r.sum(axis=2, keepdims=True)).save(
                        os.path.join(report_dir, label, name + '_r.jpg'))

                    if input('continue? ') != 'yes':
                        break
        except KeyboardInterrupt:
            print('interrupted by user')
        else:
            print('done')