Ejemplo n.º 1
0
    def test_basic_attributes(self):
        """Setup network and check basic parameters like TF variable names,
        number of layers, size of last feature map...
        """
        ft_dim = Shape(None, 64, 64)
        num_cls, num_layers = 10, 7

        # Compute the image dimensions required for a 2x2 feature size.
        im_dim = orpac_net.waveletToImageDim(ft_dim)

        net = orpac_net.Orpac(self.sess, im_dim, num_layers, num_cls, None, False)
        self.sess.run(tf.global_variables_initializer())
        assert net.session() is self.sess

        # The feature size must be 1/8 of the image size because the network
        # downsamples every second layer, and we specified 7 layers.
        assert num_layers == net.numLayers() == 7
        assert net.outputShape().hw() == ft_dim.hw()

        # Ensure we can query all biases and weights. Also verify the data type
        # inside the network.
        g = tf.get_default_graph().get_tensor_by_name
        for i in range(num_layers):
            # These must exist in the graph.
            assert g(f'orpac/W{i}:0') is not None
            assert g(f'orpac/b{i}:0') is not None
            assert net.getBias(i).dtype == np.float32
            assert net.getWeight(i).dtype == np.float32
Ejemplo n.º 2
0
    def setup_class(cls):
        # Feature dimension will only be 2x2 to simplify testing and debugging.
        ft_dim = Shape(None, 64, 64)
        num_cls, num_layers = 10, 7

        # Compute the image dimensions required for a 2x2 feature size.
        im_dim = orpac_net.waveletToImageDim(ft_dim)

        # Create Tensorflow session and dummy network. The network is such that
        # the feature size is only 2x2 because this makes testing easier.
        cls.sess = tf.Session()
        cls.net = orpac_net.Orpac(
            cls.sess, im_dim, num_layers, num_cls, None, train=False)
        assert cls.net.outputShape().hw() == ft_dim.hw()