Ejemplo n.º 1
0
def tune_variance_zero_mean():

    with open(get_kernel_path() + 'wienerfilter.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test.jpg", mode="F")

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])
    size = np.int32(height * width)

    tune_params = OrderedDict()
    tune_params["block_size_x"] = [2**i for i in range(5, 11)]
    tune_params["num_blocks"] = [2**i for i in range(5, 11)]

    max_blocks = max(tune_params["num_blocks"])
    output = np.zeros(max_blocks, dtype=np.float32)

    args = [size, output, image]
    problem_size = ("num_blocks", 1)

    tune_kernel("computeVarianceZeroMean",
                kernel_string,
                problem_size,
                args,
                tune_params,
                grid_div_x=[],
                verbose=True)
Ejemplo n.º 2
0
def test_wiener():

    with open(get_kernel_path() + 'wienerfilter.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test.jpg", mode="F")

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])
    problem_size = (width, height)

    output = np.zeros(problem_size, dtype=np.float32)

    args = [height, width, output, image]

    params = OrderedDict()
    params["block_size_x"] = 32
    params["block_size_y"] = 8
    params["reuse_computation"] = 1

    answer = run_kernel("computeVarianceEstimates",
                        kernel_string,
                        problem_size,
                        args,
                        params,
                        grid_div_y=["block_size_y"])

    reference = run_kernel("computeVarianceEstimates_naive",
                           kernel_string,
                           problem_size,
                           args,
                           params,
                           grid_div_y=["block_size_y"])

    assert np.allclose(answer[2], reference[2], atol=1e-6)
Ejemplo n.º 3
0
def tune_wiener():

    with open(get_kernel_path() + 'wienerfilter.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test.jpg", mode="F")

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])
    problem_size = (width, height)

    output = np.zeros(problem_size, dtype=np.float32)

    args = [height, width, output, image]

    tune_params = OrderedDict()
    tune_params["block_size_x"] = [32 * i for i in range(1, 33)]
    tune_params["block_size_y"] = [2**i for i in range(6)]

    #first the naive kernel
    #tune_kernel("computeVarianceEstimates_naive", kernel_string, problem_size, args, tune_params, grid_div_y=["block_size_y"])

    #more sophisticated kernel
    tune_params["reuse_computation"] = [0, 1]
    tune_kernel("computeVarianceEstimates",
                kernel_string,
                problem_size,
                args,
                tune_params,
                grid_div_y=["block_size_y"])
Ejemplo n.º 4
0
def tune_fastnoise():

    with open(get_kernel_path() + 'fastnoisefilter.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test.jpg", mode="F")

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])
    problem_size = (width, height)

    output = np.zeros(problem_size, dtype=np.float32)

    args = [height, width, output, image]

    tune_params = OrderedDict()
    tune_params["block_size_x"] = [32 * i for i in range(1, 33)]
    tune_params["block_size_y"] = [2**i for i in range(6)]

    kernels = [
        "normalized_gradient", "gradient", "convolveHorizontally",
        "convolveVertically", "normalize"
    ]
    for k in kernels:
        tune_kernel(k, kernel_string, problem_size, args, tune_params)
Ejemplo n.º 5
0
def test_find_peak():

    with open(get_kernel_path() + 'peaktocorrelationenergy.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test_small.jpg", mode="F")

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])
    problem_size = (width, height)

    #generate some bogus crosscorr data
    crosscorr = np.random.randn(height, width, 2).astype(np.float32)

    #compute reference in Python
    peak_index = np.argmax(np.absolute(crosscorr[:, :, 0]))
    peak_value = np.absolute(crosscorr[:, :, 0].flatten()[peak_index])

    params = {"block_size_x": 512, "num_blocks": 64}
    problem_size = ("num_blocks", 1)
    num_blocks = np.int32(params["num_blocks"])

    peakval = np.zeros((1), dtype=np.float32)
    peakvals = np.zeros((num_blocks), dtype=np.float32)
    peakindx = np.zeros((num_blocks), dtype=np.int32)
    loc = np.zeros((1), dtype=np.int32)
    val = np.zeros((1), dtype=np.float32)

    args = [height, width, peakval, peakvals, peakindx, crosscorr]
    output1 = run_kernel("findPeak",
                         kernel_string,
                         problem_size,
                         args,
                         params,
                         grid_div_x=[])

    peakvals = output1[3]
    peakindx = output1[4]

    args = [loc, val, peakindx, peakvals, num_blocks]
    output2 = run_kernel("maxlocFloats",
                         kernel_string, (1, 1),
                         args,
                         params,
                         grid_div_x=[])

    loc = output2[0][0]
    val = output2[1][0]

    print("answer")
    print("loc=", loc, "val=", val)

    print("reference")
    print("loc=", peak_index, "val=", peak_value)

    assert loc == peak_index
    assert np.isclose(val, peak_value, atol=1e-6)
Ejemplo n.º 6
0
def tune_zeromean():

    with open(get_kernel_path() + 'zeromeantotalfilter.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test.jpg", mode="F")
    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])

    tune_vertical(kernel_string, image, height, width)
    tune_horizontal(kernel_string, image, height, width)
    tune_transpose(kernel_string, image, height, width)
Ejemplo n.º 7
0
def tune_pce():

    with open(get_kernel_path()+'peaktocorrelationenergy.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "Pentax_OptioA40_0_30731.JPG", mode="F")
    image = fastnoise(image)

    image2 = imread(get_testdata_path() + "Pentax_OptioA40_0_30757.JPG", mode="F")
    image2 = fastnoise(image2)

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])

    image_freq, image2_freq = tune_complex_and_flip(kernel_string, height, width, image, image2)

    crosscorr = tune_crosscorr(kernel_string, height, width, image_freq, image2_freq)

    loc, val = tune_find_peak(kernel_string, height, width, crosscorr)

    energy = tune_energy(kernel_string, height, width, crosscorr, loc)

    pce_score = (val[0] * val[0]) / energy
    print("Finished tuning PCE, pce_score=", pce_score)
Ejemplo n.º 8
0
def test_fastnoise():

    with open(get_kernel_path()+'fastnoisefilter.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test.jpg", mode="F")

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])
    problem_size = (width, height)

    output1 = np.zeros_like(image)
    output2 = np.zeros_like(image)
    output3 = np.zeros_like(image)

    args = [height, width, output1, output2, image]

    params = OrderedDict()
    params["block_size_x"] = 32
    params["block_size_y"] = 16

    d = np.gradient(image)
    norm = np.sqrt( (d[0]*d[0]) + (d[1]*d[1]) )
    scale = 1.0 / (1.0 + norm)
    dys = d[0] * scale
    dxs = d[1] * scale

    answer = run_kernel("normalized_gradient",
        kernel_string, problem_size, args, params)

    assert np.allclose(answer[2], dxs, atol=1e-6)
    assert np.allclose(answer[3], dys, atol=1e-6)

    args = [height, width, output3, dxs, dys]
    answer = run_kernel("gradient",
        kernel_string, problem_size, args, params)

    reference = np.gradient(dys, axis=0) + np.gradient(dxs, axis=1)

    assert np.allclose(answer[2], reference, atol=1e-6)
Ejemplo n.º 9
0
def test_complex_and_flip2():

    with open(get_kernel_path() + 'peaktocorrelationenergy.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test_small.jpg", mode="F")

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])
    problem_size = (width, height)

    output = np.zeros((height, width, 2), dtype=np.float32)

    args = [height, width, output, output, image, image]

    params = OrderedDict()
    params["block_size_x"] = 32
    params["block_size_y"] = 16

    answer = run_kernel("toComplexAndFlip2",
                        kernel_string,
                        problem_size,
                        args,
                        params,
                        grid_div_y=["block_size_y"],
                        grid_div_x=["block_size_x"])

    output1 = answer[2].reshape(height, width, 2)
    output1 = output1[:, :, 0] + 1j * output[:, :, 1]
    reference1 = image + 1j * np.zeros((height, width), dtype=np.float32)
    assert np.allclose(output1, reference1, atol=1e-6)

    reference2 = image.flatten()[::-1].reshape(height, width)
    reference2 = reference2
    output2 = answer[3].reshape(height, width, 2)
    assert np.allclose(output2[:, :, 0], reference2, atol=1e-6)
    assert np.allclose(output2[:, :, 1],
                       np.zeros((height, width), dtype=np.float32),
                       atol=1e-6)
Ejemplo n.º 10
0
def test_variance_zero_mean():

    with open(get_kernel_path() + 'wienerfilter.cu', 'r') as f:
        kernel_string = f.read()

    image = imread(get_testdata_path() + "test.jpg", mode="F")

    height = np.int32(image.shape[0])
    width = np.int32(image.shape[1])
    size = np.int32(height * width)

    params = OrderedDict()
    params["block_size_x"] = 512
    params["num_blocks"] = 64

    num_blocks = params["num_blocks"]
    output = np.zeros(num_blocks, dtype=np.float32)

    args = [size, output, image]
    problem_size = ("num_blocks", 1)

    answer = run_kernel("computeVarianceZeroMean",
                        kernel_string,
                        problem_size,
                        args,
                        params,
                        grid_div_x=[])

    print("answer:")
    ans = np.sum(answer[1])
    print(ans, answer[1])
    print("reference:")
    reference = np.sum(image * image)
    print(reference)

    assert np.isclose(ans, reference, atol=1e-6)