def get_permuted_CIFAR10(path, batch_size,train):
    im_width = im_height = 32

    rand_perm = RandomPermutation(0, 0, im_width, im_height)
    normalization = transforms.Normalize((0.1307,), (0.3081,))

    #Todo: rethink RandomPermutation usage slows down dataloading by a factor > 6, Should try directly on batches.
    transfrom = transforms.Compose([
        transforms.ToTensor(),
        rand_perm,
        normalization]
    )

    if(train):
        set = ClassIncremental(
            CIFAR10(data_path="./src/data/CIFAR10", download=True, train=True),
         increment=2
        )

    else:
        set = ClassIncremental(
            CIFAR10(data_path="./src/data/CIFAR10", download=True, train=False),
         increment=2
        )

    return set
Ejemplo n.º 2
0
def test_inMemory_keepLabels_Fellowship(increment, dataset7c, dataset10c,
                                        dataset20c):
    fellow = Fellowship([dataset7c, dataset10c, dataset20c],
                        update_labels=False)

    x, y, t = fellow.get_data()
    assert len(np.unique(t)) == 3
    assert len(np.unique(y)) == 20

    if isinstance(increment, list):
        with pytest.raises(Exception):
            continuum = ClassIncremental(fellow, increment=increment)
    else:
        continuum = ClassIncremental(fellow, increment=increment)
        assert continuum.nb_classes == 20
        assert continuum.nb_tasks == 20
Ejemplo n.º 3
0
def test_Fellowship_Dimension_Fail(list_datasets):
    cl_dataset = Fellowship(data_path="./tests/Datasets",
                            dataset_list=list_datasets)

    # This does not work since CIFAR10 and MNIST data are not same shape
    with pytest.raises(ValueError):
        continuum = ClassIncremental(cl_dataset, increment=10)
Ejemplo n.º 4
0
def test_MNIST_Fellowship():
    scenario = MNISTFellowship(data_path="./tests/Datasets",
                               train=True,
                               download=True)
    scenario.get_data()
    continuum = ClassIncremental(scenario, increment=10)
    assert len(continuum) == 3
Ejemplo n.º 5
0
def scenario():
    x = np.random.randn(100, 2)
    y = np.concatenate([np.ones(10) * i for i in range(10)])
    t = None

    dataset = InMemoryDataset(x, y, t)
    return ClassIncremental(dataset, increment=2)
Ejemplo n.º 6
0
def test_inMemory_updateLabels_Fellowship(increment, dataset7c, dataset10c,
                                          dataset20c):
    fellow = Fellowship([dataset7c, dataset10c, dataset20c],
                        update_labels=True)

    x, y, t = fellow.get_data()
    assert len(np.unique(t)) == 3
    assert len(np.unique(y)) == 37

    if isinstance(increment, list):
        continuum = ClassIncremental(fellow, increment=increment)
        assert continuum.nb_classes == 37
        assert continuum.nb_tasks == len(increment)
    else:
        continuum = ClassIncremental(fellow, increment=increment)
        assert continuum.nb_tasks == 37
        assert continuum.nb_classes == 37
Ejemplo n.º 7
0
def test_Fellowship_Dimension_Fail(tmpdir, list_datasets):
    cl_dataset = Fellowship(datasets=[
        d(data_path=tmpdir, download=True, train=True) for d in list_datasets
    ])

    # This does not work since CIFAR10 and MNIST data are not same shape
    with pytest.raises(ValueError):
        continuum = ClassIncremental(cl_dataset, increment=10)
Ejemplo n.º 8
0
 def make_test_cl_scenario(self, test_dataset: _ContinuumDataset) -> _BaseScenario:
     """ Creates a test ClassIncremental object from continuum. """
     return ClassIncremental(
         test_dataset,
         nb_tasks=self.nb_tasks,
         increment=self.test_increment,
         initial_increment=self.test_initial_increment,
         class_order=self.test_class_order,
         transformations=self.transforms,
     )
Ejemplo n.º 9
0
def test_Fellowship_classes(tmpdir, list_datasets, nb_tasks):
    cl_dataset = Fellowship(data_path=tmpdir, dataset_list=list_datasets)
    scenario = ClassIncremental(cl_dataset, increment=10)

    assert len(scenario) == nb_tasks
    for task_id, taskset in enumerate(scenario):
        classes = taskset.get_classes()

        # we check if all classes are here
        assert len(classes) == (classes.max() - classes.min() + 1)
Ejemplo n.º 10
0
def mixed_samples(config: Config):
    """ Fixture that produces some samples from each task. """
    dataset = MNIST(config.data_dir, download=True, train=True)
    datasets: List[TaskSet] = ClassIncremental(dataset, nb_tasks=5)
    n_samples_per_task = 10
    indices = list(range(10))
    samples_per_task: Dict[int, Tensor] = {
        i: tuple(map(torch.as_tensor, taskset.get_samples(indices)))
        for i, taskset in enumerate(datasets)
    }
    yield samples_per_task
Ejemplo n.º 11
0
def test_example_doc():
    from torch.utils.data import DataLoader
    import numpy as np

    from continuum import Logger, ClassIncremental
    from continuum.datasets import MNIST

    train_scenario = ClassIncremental(
        MNIST(data_path="/tmp", download=True, train=True),
        increment=2
     )
    test_scenario = ClassIncremental(
        MNIST(data_path="/tmp", download=True, train=False),
        increment=2
     )

    logger = Logger()

    for task_id, (train_taskset, test_taskset) in enumerate(zip(train_scenario, test_scenario)):
        train_loader = DataLoader(train_taskset)
        test_loader = DataLoader(test_taskset)

        for x, y, t in train_loader:
            predictions = torch.clone(y)

            logger.add_batch(predictions, y)
            _ = (f"Online accuracy: {logger.online_accuracy}")

        preds, targets, task_ids = [], [], []
        for x, y, t in test_loader:
            preds.append(y.cpu().numpy())
            targets.append(y.cpu().numpy())
            task_ids.append(t.cpu().numpy())

        logger.add_step(
            np.concatenate(preds),
            np.concatenate(targets),
            np.concatenate(task_ids)
        )
        _ = (f"Task: {task_id}, acc: {logger.accuracy}, avg acc: {logger.average_incremental_accuracy}")
        _ = (f"BWT: {logger.backward_transfer}, FWT: {logger.forward_transfer}")
Ejemplo n.º 12
0
def test_example_doc():
    from torch.utils.data import DataLoader
    import numpy as np

    from continuum import ClassIncremental
    from continuum.datasets import MNIST
    from continuum.metrics import Logger

    train_scenario = ClassIncremental(
        MNIST(data_path="my/data/path", download=True, train=True),
        increment=2
    )
    test_scenario = ClassIncremental(
        MNIST(data_path="my/data/path", download=True, train=False),
        increment=2
    )

    # model = ...

    logger = Logger(list_subsets=['train', 'test'])

    for task_id, (train_taskset, test_taskset) in enumerate(zip(train_scenario, test_scenario)):
        train_loader = DataLoader(train_taskset)
        test_loader = DataLoader(test_taskset)

        for x, y, t in train_loader:
            predictions = y  # model(x)

            logger.add([predictions, y, None], subset="train")
            _ = (f"Online accuracy: {logger.online_accuracy}")

        for x_test, y_test, t_test in test_loader:
            preds_test = y_test

            logger.add([preds_test, y_test, t_test], subset="test")

        _ = (f"Task: {task_id}, acc: {logger.accuracy}, avg acc: {logger.average_incremental_accuracy}")
        _ = (f"BWT: {logger.backward_transfer}, FWT: {logger.forward_transfer}")

        logger.end_task()
def test_observation_spaces_match_dataset(dataset_name: str):
    """ Test to check that the `observation_spaces` and `reward_spaces` dict
    really correspond to the entries of the corresponding datasets, before we do
    anything with them.
    """
    # CIFARFellowship, MNISTFellowship, ImageNet100,
    # ImageNet1000, CIFAR10, CIFAR100, EMNIST, KMNIST, MNIST,
    # QMNIST, FashionMNIST,
    dataset_class = ClassIncrementalSetting.available_datasets[dataset_name]
    dataset = dataset_class("data")

    observation_space = base_observation_spaces[dataset_name]
    reward_space = reward_spaces[dataset_name]
    for task_dataset in ClassIncremental(dataset, nb_tasks=1):
        first_item = task_dataset[0]
        x, t, y = first_item
        assert x in observation_space
        assert y in reward_space
Ejemplo n.º 14
0
def main(args):
    def print2(parms, *aargs, **kwargs):
        redirect(parms, path=args.outfile, *aargs, **kwargs)

    start_time = time.time()

    # print args recap
    print2(args, end='\n\n')
    
    # Load the core50 data
    # TODO: check the symbolic links as for me no '../' prefix needed.

    if args.download:
        print2('cli switch download set to True so download will occur...')
        print2('  alternatively the batch script fetch_data_and_setup.sh can be used')

    
    print2('using directory for data_path path {}'.format(args.data_path))


    core50 = Core50(args.data_path, train=True, download=args.download)
    core50_val = Core50(args.data_path, train=False, download=args.download)

    # A new classes scenario, using continuum
    scenario = ClassIncremental(
        core50,
        increment=5,
        initial_increment=10,
        # following values come from the the mean and std of ImageNet - the basis of resnet.
        transformations=[ ToTensor(), Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]
    )
    scenario_val = ClassIncremental(
        core50_val,
        increment=5,
        initial_increment=10,
        # following values come from the the mean and std of ImageNet - the basis of resnet.
        transformations=[ ToTensor(), Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]
    )

    print2(f"Number of classes: {scenario.nb_classes}.")
    print2(f"Number of tasks: {scenario.nb_tasks}.")

    # Define a model
    # model
    if args.classifier == 'resnet18':
        classifier = models.resnet18(pretrained=True)
        classifier.fc = torch.nn.Linear(512, args.n_classes)
    
    elif args.classifier == 'resnet101':
        classifier = models.resnet101(pretrained=True)
        classifier.fc = nn.Linear(2048, args.n_classes)

    elif args.classifier == 'resnet34':
        classifier = models.resnet34(pretrained=True)
        classifier.fc = nn.Linear(512, args.n_classes)
    
    else:
        raise Exception('no classifier picked')

    # Fix for RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
    if torch.cuda.is_available():
        classifier.cuda()

    # TODO: fix device specific cuda usage to we can parallel
    # TODO: right now probably due to marshalling parallel taking slightly longer
    # TODO: this parm is now default to false.
    if args.use_parallel and torch.cuda.device_count() > 1:
        print2(f"Let's use {torch.cuda.device_count()} GPUs!")
        classifier = nn.DataParallel(classifier)

    # Tune the model hyperparameters
    max_epochs = args.epochs # 8
    convergence_criterion = args.convergence_criterion # 0.004  # End early if loss is less than this
    lr = args.lr  # 0.00001
    weight_decay = args.weight_decay # 0.000001
    momentum = args.momentum # 0.9

    # Define a loss function and criterion
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(
        classifier.parameters(), 
        lr=lr, 
        weight_decay=weight_decay, 
        momentum=momentum
        )
    print2("Criterion: " + str(criterion))
    print2("Optimizer: " + str(optimizer))

    # Validation accuracies
    accuracies = []

    # Iterate through our NC scenario
    for task_id, train_taskset in enumerate(scenario):

        print2(f"<-------------- Task {task_id + 1} ---------------->")

        # Use replay if it's specified
        if args.replay:

            # Add replay examples to current taskset
            replay_examples = taskset_with_replay(scenario, task_id, args.replay)
            train_taskset._x = np.append(train_taskset._x, replay_examples['x'])
            train_taskset._y = np.append(train_taskset._y, replay_examples['y'])
            train_taskset._t = np.append(train_taskset._t, replay_examples['t'])

        train_loader = DataLoader(train_taskset, batch_size=32, shuffle=True)
        unq_cls_train = np.unique(train_taskset._y)

        print2(f"This task contains {len(unq_cls_train)} unique classes")
        print2(f"Training classes: {unq_cls_train}")

        # Train the model
        classifier.train()
        if args.importance:
            # EWC
            if task_id == 0:
                train(classifier, task_id, train_loader, criterion, optimizer, max_epochs, convergence_criterion)
            else:
                old_tasks = []
                for prev_id, prev_taskset in enumerate(scenario):
                    if prev_id == task_id:
                        break
                    else:
                        old_tasks = old_tasks + list(prev_taskset._x)
                train_ewc(classifier, task_id, train_loader, criterion, EWC(classifier, train_taskset, scenario, task_id), args.importance, optimizer, max_epochs, convergence_criterion)
        else:
            train(classifier, task_id, train_loader, criterion, optimizer, max_epochs, convergence_criterion)

        print2("=== Finished Training ===")
        classifier.eval()

        # Validate against separate validation data
        cum_accuracy = 0.0
        for val_task_id, val_taskset in enumerate(scenario_val):

            # Validate on all previously trained tasks (but not future tasks)
            if val_task_id > task_id:
                break

            val_loader = DataLoader(val_taskset, batch_size=32, shuffle=True)

            # Make sure we're validating the correct classes
            unq_cls_validate = np.unique(val_taskset._y)
            print2(f"Validating classes: {unq_cls_validate} -- val_task_id:{val_task_id}  task_id:{task_id}")

            total = 0.0
            correct = 0.0
            pred_classes = np.array([])
            with torch.no_grad():
                for x, y, t in val_loader:
                    x, y = x.cuda(), y.cuda()
                    outputs = classifier(x)
                    _, predicted = torch.max(outputs.data, 1)
                    pred_classes = np.unique(np.append(pred_classes, predicted.cpu()))
                    total += y.size(0)
                    correct += (predicted == y).sum().item()
            
            print2(f"Classes predicted: {pred_classes}")
            print2(f"=== Validation Accuracy: {100.0 * correct / total}%\n")
            cum_accuracy += (correct / total)
        
        avg_accuracy = cum_accuracy / 9
        print2(f"Average Accuracy: {100.0 * avg_accuracy:.5f}%  [{avg_accuracy:.5f}]")
        accuracies.append((cum_accuracy / 9))   
        # print2(f"Average Accuracy: {100.0 * cum_accuracy / 9.0}%")

        
    
    # Running Time
    print2("--- %s seconds ---" % (time.time() - start_time))

    # TO DO Add EWC Training

    # Some plots over time
    from pathlib import Path
    Path('continuum/output').mkdir(parents=True, exist_ok=True)

    plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9], accuracies, '-o', label="Naive")
    #plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9], rehe_accs, '-o', label="Rehearsal")
    #plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9], ewc_accs, '-o', label="EWC")
    plt.xlabel('Tasks Encountered', fontsize=14)
    plt.ylabel('Average Accuracy', fontsize=14)
    plt.title('Rehersal Strategy on Core50 w/ResNet18', fontsize=14)
    plt.xticks([1, 2, 3, 4, 5, 6, 7, 8, 9])
    plt.legend(prop={'size': 16})
    plt.show()
    filenames = dt.datetime.now().strftime("%Y%m%d-%H%M%S")
    plt.savefig('continuum/output/run_'+filenames+'.png')
Ejemplo n.º 15
0
def test_MNIST_Fellowship(tmpdir):
    dataset = MNISTFellowship(data_path=tmpdir, train=True, download=True)
    dataset.get_data()
    continuum = ClassIncremental(dataset, increment=10)
    assert len(continuum) == 3
def test_split_batch_fn():
    # from continuum.datasets import MNIST
    batch_size = 5
    max_batches = 10

    def split_batch_fn(
        batch: Tuple[Tensor, Tensor, Tensor]
    ) -> Tuple[Tuple[Tensor, Tensor], Tensor]:
        x, y, t = batch
        return (x, t), y

    # dataset = MNIST("data", transform=Compose([Transforms.to_tensor, Transforms.three_channels]))
    from continuum import ClassIncremental
    from continuum.datasets import MNIST
    from continuum.tasks import split_train_val

    scenario = ClassIncremental(
        MNIST("data", download=True, train=True),
        increment=2,
        transformations=Compose(
            [Transforms.to_tensor, Transforms.three_channels]),
    )

    classes_per_task = scenario.nb_classes // scenario.nb_tasks
    print(f"Number of classes per task {classes_per_task}.")
    for i, task_dataset in enumerate(scenario):
        env = PassiveEnvironment(
            task_dataset,
            n_classes=classes_per_task,
            batch_size=batch_size,
            split_batch_fn=split_batch_fn,
            # Need to pass the observation space, in this case.
            observation_space=spaces.Tuple([
                spaces.Box(low=0, high=1, shape=(3, 28, 28)),
                spaces.Discrete(scenario.nb_tasks),  # task label
            ]),
            action_space=spaces.Box(
                low=np.array([i * classes_per_task]),
                high=np.array([(i + 1) * classes_per_task]),
                dtype=int,
            ),
        )
        assert spaces.Box(
            low=np.array([i * classes_per_task]),
            high=np.array([(i + 1) * classes_per_task]),
            dtype=int,
        ).shape == (1, )
        assert isinstance(env.observation_space[0], spaces.Box)
        assert env.observation_space[0].shape == (batch_size, 3, 28, 28)
        assert env.observation_space[1].shape == (batch_size, )
        assert env.action_space.shape == (batch_size, 1)
        assert env.reward_space.shape == (batch_size, 1)

        env.seed(123)

        obs = env.reset()
        assert len(obs) == 2
        x, t = obs
        assert x.shape == (batch_size, 3, 28, 28)
        assert t.shape == (batch_size, )

        obs, reward, done, info = env.step(env.action_space.sample())
        assert x.shape == (batch_size, 3, 28, 28)
        assert t.shape == (batch_size, )
        assert reward.shape == (batch_size, )
        assert not done

        env.close()
Ejemplo n.º 17
0
def test_CIFAR_Fellowship():
    cl_dataset = CIFARFellowship(data_path="./tests/Datasets",
                                 train=True,
                                 download=True)
    scenario = ClassIncremental(cl_dataset, increment=10)
    assert len(scenario) == 11