def model_selector(model_type):
    if model_type == 'vgg':
        return vgg19(pretrained=False, num_classes=2)
    elif model_type == 'resnet':
        return resnet18(is_ptrtrained=False)
    else:
        raise ValueError('')
Ejemplo n.º 2
0
def load_pretrained_model(pretrained_path, model_type):
    checkpoint = torch.load(add_prefix(pretrained_path, 'model_best.pth.tar'))
    if model_type == 'vgg':
        model = vgg19(pretrained=False, num_classes=2)
        print('load vgg successfully.')
    elif model_type == 'resnet':
        model = resnet18(is_ptrtrained=False)
        print('load resnet18 successfully.')
    else:
        raise ValueError('')
    model.load_state_dict(remove_prefix(checkpoint['state_dict']))
    return model
def load_pretrained_model(prefix, model_type):
    if model_type == 'resnet':
        model = resnet18(is_ptrtrained=False)
    elif model_type == 'vgg':
        model = vgg19(num_classes=2, pretrained=False)
    else:
        raise ValueError('')

    checkpoint = torch.load(add_prefix(prefix, 'model_best.pth.tar'))
    print('load pretrained model successfully.')
    model.load_state_dict(remove_prefix(checkpoint['state_dict']))
    print('best acc=%.4f' % checkpoint['best_accuracy'])
    return model
def load_pretrained_model(prefix):
    checkpoint = torch.load(add_prefix(prefix, 'model_best.pth.tar'))
    model = vgg19(num_classes=2, pretrained=False)
    print('load pretrained vgg19 successfully.')
    model.load_state_dict(remove_prefix(checkpoint['state_dict']))
    return model