Ejemplo n.º 1
0
def plotPolesAndZeros(tf):
    num = [tf[0], tf[1], tf[2]]
    den = [tf[3], tf[4], tf[5]]
    sistema = cl.TransferFunction(num, den)
    cl.pzmap(sistema, Plot=True)
    plt.show()
    return
Ejemplo n.º 2
0
def plot_zpk_from_H(H, title=None, w0=1):
    control.pzmap(H, Plot=True, title=title)
    theta = np.linspace(0, 2*np.pi, 100)
    r = w0
    x1 = r*np.cos(theta)
    x2 = r*np.sin(theta)
    plt.plot(x1, x2, 'r', label=r'$\Omega _0$ = {}'.format(w0))
    plt.legend(fancybox=True, framealpha=1, shadow=True, borderpad=1, fontsize='x-large', bbox_to_anchor=(1, 1))
    plt.grid()
    plt.tight_layout()
Ejemplo n.º 3
0
def locate_poles():
    """
        Finds location of a system's zeros and poles
    """
    n1 = np.array([1, 1])
    n2 = np.array([1, 2])

    d1 = np.array([1, 2j])
    d2 = np.array([1, -2j])
    d3 = np.array([1, 3])

    numerator_g, denominator_g = np.array([6, 0, 1]), np.array([1, 3, 3, 1])
    sys_g = ct.tf(numerator_g, denominator_g)

    zeros_g = ct.zero(sys_g)
    pole_g = ct.pole(sys_g)

    numerator_h = np.convolve(n1, n2)
    denominator_h = np.convolve(d1, np.convolve(d2, d3))
    sys_h = ct.tf(numerator_h, denominator_h)

    sys_tf = sys_g / sys_h

    pzmap_sys = ct.pzmap(sys_tf)

    print(AsciiTable([['Poles and Zeros']]).table)
    data = [['Function', 'Result Ouput'], ['G(s)', sys_g],
            ['Zeros(g)', zeros_g], ['Pole(g)', pole_g], ['H(s)', sys_h],
            ['T(s)', sys_tf], ['Pzmap(s)', pzmap_sys]]
    print(AsciiTable(data).table)
Ejemplo n.º 4
0
def pzmap(W):
    f = con.pzmap(W)
    plt.title("Расположение полюсов на комплексной плоскости")
    plt.grid(True)
    plt.show()
    g = f[0]  # возвращает список всех полюсов - корней знаменателя
    D = True
    j = 0
    G = False
    while D and j < len(g):
        r = g[j].real
        if float(r) <= 0.000000:
            # print("Левый корень = " + str(r))
            D = True
            if float(r) == 0.0:
                G = True
        else:
            D = False
            print("Первый правый  корень = " + str(r))
        j = j + 1
    if D and G:
        print("Система на границе устойчивости, есть нулевые корни")
    elif D:
        print("Система устойчива, все корни левые")
    else:
        print("Cистема не устойчива, есть хотя бы один правый корень")
Ejemplo n.º 5
0
def TranformadaZ(titutlo,num,den):
    h1 = control.TransferFunction(num,den)
    [zeros,poles,gain] = signal.tf2zpk(num,den)
    print(titutlo)
    print("zeros")
    print(zeros)
    print("polos ")
    print(poles)
    print("\n")

    control.pzmap(h1, Plot=True, grid=False, title=titutlo)
    [t,y] = signal.impulse( (num,den) )
    plt.figure()
    plt.suptitle(titutlo)
    plt.plot(t, y)
    plt.title('Respuesta al impulso')    
Ejemplo n.º 6
0
def dpzmap(sys, title):
    """Plot poles and zeroes of discrete system.

    Keyword arguments:
    sys -- the system to plot
    title -- the title of the plot
    """
    cnt.pzmap(sys, title=title)
    circle = plt.Circle((0, 0), radius=1, fill=False)
    ax = plt.gca()
    ax.add_artist(circle)
    plt.xlim([-1, 1])
    plt.ylim([-1, 1])
    x0, x1 = ax.get_xlim()
    y0, y1 = ax.get_ylim()
    ax.set_aspect(abs(x1 - x0) / abs(y1 - y0))
Ejemplo n.º 7
0
def test_pzmap(kwargs, setdefaults, dt, editsdefaults, mplcleanup):
    """Test pzmap"""
    # T from from pvtol-nested example
    T = TransferFunction([
        -9.0250000e-01, -4.7200750e+01, -8.6812900e+02, +5.6261850e+03,
        +2.1258472e+05, +8.4724600e+05, +1.0192000e+06, +2.3520000e+05
    ], [
        9.02500000e-03, 9.92862812e-01, 4.96974094e+01, 1.35705659e+03,
        2.09294163e+04, 1.64898435e+05, 6.54572220e+05, 1.25274600e+06,
        1.02420000e+06, 2.35200000e+05
    ], dt)

    Pref = [
        -23.8877 + 19.3837j, -23.8877 - 19.3837j, -23.8349 + 15.7846j,
        -23.8349 - 15.7846j, -5.2320 + 0.4117j, -5.2320 - 0.4117j,
        -2.2246 + 0.0000j, -1.5160 + 0.0000j, -0.3627 + 0.0000j
    ]
    Zref = [
        -23.8877 + 19.3837j, -23.8877 - 19.3837j, +14.3637 + 0.0000j,
        -14.3637 + 0.0000j, -2.2246 + 0.0000j, -2.0000 + 0.0000j,
        -0.3000 + 0.0000j
    ]

    pzkwargs = kwargs.copy()
    if setdefaults:
        for k in ['plot', 'grid']:
            if k in pzkwargs:
                v = pzkwargs.pop(k)
                config.set_defaults('pzmap', **{k: v})

    P, Z = pzmap(T, **pzkwargs)

    np.testing.assert_allclose(P, Pref, rtol=1e-3)
    np.testing.assert_allclose(Z, Zref, rtol=1e-3)

    if kwargs.get('plot', True):
        ax = plt.gca()

        assert ax.get_title() == kwargs.get('title', 'Pole Zero Map')

        # FIXME: This won't work when zgrid and sgrid are unified
        children = ax.get_children()
        has_zgrid = False
        for c in children:
            if isinstance(c, matplotlib.text.Annotation):
                if r'\pi' in c.get_text():
                    has_zgrid = True
        has_sgrid = isinstance(ax, mpltAxes)

        if kwargs.get('grid', False):
            assert dt == has_zgrid
            assert dt != has_sgrid
        else:
            assert not has_zgrid
            assert not has_sgrid
    else:
        assert not plt.get_fignums()
Ejemplo n.º 8
0
def question1(Gpr, plot=True):
    print(spacer + "Question 1" + spacer)
    # 1. POLES AND ZEROS
    poles = ct.pole(Gpr)
    zeros = ct.zero(Gpr)
    print("\t Poles of the system are {}, and zeroes are {}".format(
        poles, zeros))

    # 2. PZ MAP
    H = 1
    OLTF = Gpr * H

    plt.figure("Q1 - PZ map")
    ct.pzmap(OLTF)

    if plot: plt.show
    # 3. STABILITY
    stable = True
    for pole in poles:
        if (pole > 0): stable = False

    temp = "unstable"
    if (stable): temp = "stable"
    print("\t Since {} are the poles, the system is {}".format(poles, temp))

    # 4. STEP RESPONSE
    t, c = ct.step_response(OLTF)
    end_value = c[c.size - 1]

    print("\t The end value of the OL step_response is {}".format(end_value))

    plt.figure("Q1 - Step response")
    plt.plot(t, c)

    # plot asymptote
    x_coordinates = [t[0], t[t.size - 1]]
    y_coordinates = [end_value, end_value]
    plt.plot(x_coordinates, y_coordinates)

    if plot: plt.show()

    return OLTF
Ejemplo n.º 9
0
def grafic_pol(f, name):
    # x = cm.pole(f).real
    # y = cm.pole(f).imag

    # plt.plot(x, y)
    # plt.plot(cm.pole(f))

    ctr.pzmap(f, Plot=True, title='Pole Zero Map {}'.format(name))
    [p, z] = ctr.pzmap(f)
    # x = ctr.pzmap(f).real
    # y = ctr.pzmap(f).imag
    print("Полюса {}: \n".format(name))
    print("p = {}".format(p))
    print("z = {}".format(z))
    # print("x ={} \n".format(x))
    # print("y = {} \n".format(y))
    # plt.title("График полюсов функции {}".format(name))
    # plt.ylabel("Мниманя ось")
    # plt.xlabel("Действительная часть")
    # plt.grid(True)
    plt.show()
Ejemplo n.º 10
0
def multi_loop():
    """
        Gives the transfer funtion of multi-loop system

        Feedback[ R(s) -> (G1 - H2) -> G2 -> feedback(G3G4, H1) , H3]-> C(s)
    """
    g1 = np.array([
        [1], [1, 10]])

    g2 = np.array([
        [1],
        [1, 1]]
    )
    g3 = np.array([
        [1, 0, 1],
        [1, 4, 4]
    ])
    g4 = np.array([
        [1, 1],
        [1, 6]
    ])

    h1 = np.array([
        [1, 1],
        [1, 2]
    ])
    h2 = np.array([[2], 1])
    h3 = np.array([[1], 1])

    sys_g1 = get_sys(g1, sys_name='tf')
    sys_g2 = get_sys(g2, 'tf')
    sys_g3 = get_sys(g3, 'tf')
    sys_g4 = get_sys(g4, 'tf')
    sysh1 = get_sys(h1, 'tf')
    sysh2 = get_sys(h2, 'tf')
    sysh3 = get_sys(h3, 'tf')

    td.ouput(title='Exercise One',
             keys=['G1', 'G2', 'G3', 'G4', 'H1', 'H2', 'H3'],
             values=[sys_g1, sys_g2, sys_g3, sys_g4, sysh1, sysh2, sysh3])
    sys_t = ct.series(sys_g1 - sysh2, sys_g2)
    sys_t = ct.series(sys_t,
                      ct.feedback(
                          ct.series(sys_g3, sys_g4), sysh1, sign=1))
    tS = ct.feedback(sys_t, sysh3)
    zeros, poles = ct.pzmap(tS, Plot=True, grid=True)

    show_plot(zeros, poles)
Ejemplo n.º 11
0
import control as co
import matplotlib.pyplot as plt

s = co.tf('s')
g = (s + 1) / (s**3 + 6 * s - 5)

plt.figure(1)
siso = co.sisotool(g)

plt.figure(2)
co.pzmap(g)

# control function
k = 11
z = -1
cs = k * (s - z)
"""Δοκιμάζοντας τιμές για μηδενικά, προσθέτω μόνο ένα πραγματικό μηδενικό, άρα το cs θα έχει 
πολυώνυμο στο αριθμητή και 1 στον παρονομαστή"""

# the controlled system
g_feedback = co.feedback(co.series(g, cs), 1, sign=-1)
print(g_feedback)

# pole zero plot of the closed controlled system
plt.figure(3)
co.pzmap(g_feedback)
plt.show()
Ejemplo n.º 12
0
plt.subplot(2, 1, 2)
plt.semilogx(w / (2 * np.pi),
             np.unwrap(phasec) * 180 / np.pi,
             label='Continous')
plt.semilogx(w / (2 * np.pi),
             np.unwrap(phased) * 180 / np.pi,
             '--',
             label='Discrete')
plt.grid(which='major', linestyle='-', linewidth='0.5', color='gray')
plt.grid(which='minor', linestyle=':', linewidth='0.5', color='gray')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Phase [Deg]')
# plt.title('Frequency Response - Comparison')
plt.legend()

con.pzmap(sysc, title='Cont System Laplace plane')

con.pzmap(sysd, title='Discrete System Z plane')
if sysd.isdtime():
    cir_phase = np.linspace(0, 2 * np.pi, 500)
    plt.plot(np.real(np.exp(1j * cir_phase)), np.imag(np.exp(1j * cir_phase)),
             'r--')
    plt.axis('equal')

plt.figure()
real, imag, freq = con.nyquist_plot(sysc)
scale = K / 2 + 1
plt.axis([-scale, scale, -scale, scale])
plt.title('Nyquist plot discrete')

# plt.figure()
Ejemplo n.º 13
0
# plot unit circle
def Circle(x,y):
    return (x*x+y*y)

plt.figure(1)
xx=numpy.linspace(-2,2,400)
yy=numpy.linspace(-2,2,400)
[X,Y]=numpy.meshgrid(xx,yy)

Z=Circle(X,Y)
plt.contour(X,Y,Z,[1])

# zero / pole plot
tf_bw = control.TransferFunction(b_bw, a_bw)
control.pzmap(tf_bw)
plt.show()

# plot frequency response
w, h = scipy.signal.freqz(b_bw, a_bw)
plt.figure(2)
plt.title('Butterworth Frequency Response')
plt.plot(w, 20 * numpy.log10(abs(h)), 'b')
plt.ylabel('Amplitude [dB]', color='b')
plt.ylim(-450, 100)
plt.xlabel('Frequency [rad/sample]')
plt.show()



Ejemplo n.º 14
0
             label='Freq response from z-plane')
else:
    plt.plot(w / (2 * np.pi),
             freq_resp_dB[int(freq_resp_dB.size / 2):],
             label='Freq response from s-plane')
plt.plot(w / (2 * np.pi),
         hf.db(mag),
         'r--',
         label='Freq response from con.freqresp')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Mag [dB]')
plt.title('Comparing freq response from s/z plane to con.freqresp')
plt.legend()

# pole zero plot
poles, zeros = con.pzmap(sys_und_tst)
plt.axis('equal')

print(f'ploes are {poles}')
print(f'zeros are {zeros}')

# plt.figure()
# plt.grid()
# plt.axis('equal')
# if len(poles) > 0:
#     plt.plot(poles.real, poles.imag, 'bx')
# if len(zeros) > 0:
#     plt.plot(zeros.real, zeros.imag, 'bo')

if sys_und_tst.isdtime():
    cir_phase = np.linspace(0, 2 * np.pi, nsamp_single)
Ejemplo n.º 15
0
#Encontrar la fucnion de transferencia
#Usar signal.tf2zpk para encontrar polos y zeros de cada función
#A
num = [1, -3]
den = [1, 4, 4]
h1 = control.TransferFunction(num, den)
[zeros, poles, gain] = signal.tf2zpk(num, den)
print("h1")
print("zeros")
print(zeros)
print("polos ")
print(poles)
print("\n")

control.pzmap(h1, Plot=True, grid=False, title='H1')
[t, y] = signal.impulse(([1, -3], [1, 4, 4]))
plt.figure()
plt.suptitle("H1")
plt.subplot(211)
plt.plot(t, y)
plt.title('Respuesta al impulso')
[t, y] = signal.step(([1, -3], [1, 4, 4]))
plt.subplot(212)
plt.plot(t, y)
plt.title('Respuesta al escalon')

#B
num = [1]
den = [1, 4, 4]
h2 = control.TransferFunction(num, den)
Ejemplo n.º 16
0
den = np.array([1, 0, 0])

z, p, k = sig.tf2zpk(num, den)

ww, hh = sig.freqz(num, den)
print("Z =", z, "\n", "P =", p, "\n", "K =", k, "\n")
ww, hh = sig.freqz(num, den)
ww = ww / np.pi

eps = np.finfo(float).eps

plt.figure("Filtro FIR")
ax1 = plt.subplot(2, 1, 1)
ax1.set_title('Módulo')
ax1.plot(ww, 20 * np.log10(abs(hh + eps)))
ax1.set_xlabel('Frequencia normalizada')
ax1.set_ylabel('Modulo [dB]')
plt.grid()
ax2 = plt.subplot(2, 1, 2)
ax2.set_title('Fase')
ax2.plot(ww, np.angle(hh))
ax2.set_xlabel('Frequencia normalizada')
ax2.set_ylabel('[Rad]')
plt.grid()
plt.show()
plt.tight_layout()

tf = control.TransferFunction(num, den, 1)
print(tf)
control.pzmap(tf, Plot=True, title='Pole Zero Map', grid=True)
#if using termux
import subprocess
import shlex
#end if

p1 = 2 * np.pi * 1e4
p2 = 2 * np.pi * 1e5
H = 81 / (4 * 1e4)

num = [1000]
den = [(1 / (p1 * p2)), ((1 / p1) + (1 / p2)), (1000 * H + 1)]
#den=[(1e-9), (11*1e-5), 3.025]
sys = control.tf(num, den)

pole, zero = control.pzmap(sys, Plot=False)
print("Poles are :", pole)
x = (pole.real)
y = (pole.imag)
plt.plot(x[0], y[0], marker="X")
plt.plot(x[1], y[1], marker="X")
plt.grid()
plt.axhline(y=0, color='k')
plt.axvline(x=0, color='k')

plt.savefig('./figs/ee18btech11036/ee18btech11036_1.pdf')
plt.savefig('./figs/ee18btech11036/ee18btech11036_1.eps')
subprocess.run(
    shlex.split("termux-open ./figs/ee18btech11036/ee18btech11036_1.pdf"))
#else
#plt.show()
Ejemplo n.º 18
0
h1 = co.feedback(g1, 2, -1)
h2 = co.feedback(g1, 3, -1)
h3 = co.feedback(g1, 5, -1)

print("poles (k=2)")
for elem in co.pole(h1):
    print(f'{elem: .2f}')
print("poles (k=3)")
for elem in co.pole(h2):
    print(f'{elem: .2f}')
print("poles (k=5)")
for elem in co.pole(h3):
    print(f'{elem: .2f}')

plt.figure(1)
h1_map = co.pzmap(h1, plot=True, title='pzmap (k=2)')
plt.figure(2)
h2_map = co.pzmap(h2, plot=True, title='pzmap (k=3)')
plt.figure(3)
h3_map = co.pzmap(h3, plot=True, title='pzmap (k=5)')

t = np.linspace(0, 10, 1000)

t1, imp1 = co.impulse_response(h1, t)
t2, imp2 = co.impulse_response(h2, t)
t3, imp3 = co.impulse_response(h3, t)

t4, stp1 = co.step_response(h1, t)
t5, stp2 = co.step_response(h2, t)
t6, stp3 = co.step_response(h3, t)
Ejemplo n.º 19
0
t = Symbol('t')
K = Symbol('K')
#Some hard-coded values
num = [1]
den = [1, 3, 2]
H = 1

#Transfer Function
G = control.tf(num, den)
G_feedbacked = control.feedback(G, H)
control.sisotool(G_feedbacked)
print("OPEN LOOP TRANSFER FUNCTION")
print(G)
print("CLOSE LOOP TRANSFER FUNCTION")
print(G_feedbacked)
poles, zeros = control.pzmap(G, True, True)
all_points = np.concatenate([[-np.Infinity], zeros, poles])
all_points.sort()
all_real_points = np.real(all_points[np.isreal(all_points)])
print("Range in real axis :")
range_of_real_axis = []
for i in range(len(all_real_points) - 1, 0, -2):
    print("From " + str(all_real_points[i - 1]) + " to " +
          str(all_real_points[i]))
    range_of_real_axis += [all_real_points[i - 1], all_real_points[i]]
print("The starting points are:" + str(poles))
print("The ending points are:" + str(zeros))
print("The total number of branches is: " + str(len(poles)))
sum_of_inverse_zeros = 0
sum_of_inverse_poles = 0
for zero in zeros:
Ejemplo n.º 20
0
plt.clf()
# plt.setp(plt.gca(), autoscale_on=False)
# tellme('click to begin')

# plt.waitforbuttonpress()
plt.ion()
plt.show(block=False)
# the output can be collected by this variable result
for i in range(-80, 80):
    den = [1, 6, 11, 6, i * 0.25]
    # result = checkStability(den)

    # confirmation by plotting pole-zero graph on s-plane
    p, z = ctrl.pzmap(ctrl.TransferFunction(num, den),
                      Plot=False,
                      title="when k=10.1")
    if i == -80:
        t1 = plt.plot(p[0].real, p[0].imag, 'k*')
        plt.setp(t1, markersize=24.0, markeredgewidth=2.0)
        t1 = plt.plot(p[1].real, p[1].imag, 'k*')
        plt.setp(t1, markersize=24.0, markeredgewidth=2.0)
        t1 = plt.plot(p[2].real, p[2].imag, 'k*')
        plt.setp(t1, markersize=24.0, markeredgewidth=2.0)
        t1 = plt.plot(p[3].real, p[3].imag, 'k*')
        plt.setp(t1, markersize=24.0, markeredgewidth=2.0)
    if i == 79:
        t1 = plt.plot(p[0].real, p[0].imag, 'kx')
        plt.setp(t1, markersize=24.0, markeredgewidth=2.0)
        t1 = plt.plot(p[1].real, p[1].imag, 'kx')
        plt.setp(t1, markersize=24.0, markeredgewidth=2.0)
Ejemplo n.º 21
0
color = 'b'

# Add arrows to the plot
# H1 = L.evalfr(0.4); H2 = L.evalfr(0.41);
# arrow([real(H1), imag(H1)], [real(H2), imag(H2)], AM_normal_arrowsize, \
#  'EdgeColor', color, 'FaceColor', color);

# H1 = freqresp(L, 0.35); H2 = freqresp(L, 0.36);
# arrow([real(H2), -imag(H2)], [real(H1), -imag(H1)], AM_normal_arrowsize, \
#  'EdgeColor', color, 'FaceColor', color);

plt.figure(9)
Tvec, Yvec = ct.step_response(T, np.linspace(0, 20))
plt.plot(Tvec.T, Yvec.T)

Tvec, Yvec = ct.step_response(Co * S, np.linspace(0, 20))
plt.plot(Tvec.T, Yvec.T)

plt.figure(10)
plt.clf()
P, Z = ct.pzmap(T, plot=True, grid=True)
print("Closed loop poles and zeros: ", P, Z)

# Gang of Four
plt.figure(11)
plt.clf()
ct.gangof4_plot(Hi * Po, Co)

if 'PYCONTROL_TEST_EXAMPLES' not in os.environ:
    plt.show()
Ejemplo n.º 22
0
import scipy.signal as signal
from base.impseq import *
from base.stepseg import *

b = np.array([0, 0.866, 0.0306, -2.486, 3.2094, -1.62, 0.84])
a = np.array([1, -2.9, 4.8, -4.7, 2.8, -0.9])
R, p, c = signal.residuez(b, a)
# print(R)
print("poles:")
print(p)
# print(c)
print("roots:")
roots = np.roots(b)

# b = np.array([3])
# a = np.array([1,-1])

delta, n1 = impseg(0, 0, 10)
delta = delta.astype('float64')
xb1 = signal.lfilter(b, a, delta)

step, n2 = stepseg(0, 0, 10)
step_minus_2, _ = stepseg(2, 0, 10)
xb2 = n2 * np.sin(np.pi / 3 * n2) * step + np.power(0.9, n2) * step_minus_2

err = xb1 - xb2
print(err)

tfx = control.tf(b, a)
control.pzmap(tfx)
plt.show()
# C = np.array([[0, 1, 0, 0]])
D = np.array([[0]])

S = ctl.ss(A, B, C, D)
print('S =', S)

#########################################################
#  Funcao de transferencia
#########################################################
G = ctl.ss2tf(S)
print('G =', G)

#########################################################
#  Polos e zeros
#########################################################
(p, z) = ctl.pzmap(G)
print('polos =', p)
print('zeros =', z)
plt.show()

#########################################################
#  Plot da resp no dominio do tempo ao impulso unitario
#########################################################
# T, yout = ctl.impulse_response(G)
# plt.plot(T, yout)
# plt.show()

#########################################################
#  Plot da resp no dominio do tempo ao degrau unitario
#########################################################
T, yout = ctl.step_response(G)
Ejemplo n.º 24
0
den = den.subs({f0: 77500, r3: 100000, r4: 47000})

poles = []
zeros = []

max_r_jfet = 10000
for i in range(0, max_r_jfet + 1000, 100):
    new_den = sympy.Poly(den.subs(r_jfet, i), s)
    new_num = sympy.Poly(num.subs(r_jfet, i), s)
    num_coeffs = list(new_num.coeffs())
    den_coeffs = list(new_den.coeffs())
    num_coeffs = [float(e) for e in num_coeffs]
    den_coeffs = [float(e) for e in den_coeffs]

    sys = control.tf(num_coeffs, den_coeffs)
    new_poles, new_zeros = control.pzmap(sys, Plot=False)
    poles.extend(new_poles)
    zeros.extend(new_zeros)

x_poles = [pole.real for pole in poles]
y_poles = [pole.imag for pole in poles]
x_zeros = [zero.real for zero in zeros]
y_zeros = [zero.imag for zero in zeros]

fig, (poles_plot, zeros_plot) = plt.subplots(1, 2)
fig.suptitle('Diagrama de polos y ceros')
poles_plot.scatter(x_poles, y_poles, marker='x', c='red')
zeros_plot.scatter(x_zeros, y_zeros, marker='o', c='blue')

poles_plot.set_xlabel('Parte real σ (Hz)')
poles_plot.set_ylabel('Parte imaginaria jω (Hz)')
Ejemplo n.º 25
0
# ---------------- Initiate Plant ------------------
num = 2 * gamma * v_bar / (r_bar**2)
p1 = 2 * gamma * v_bar**2 / r_bar**3
den = [1, 0, p1]

Gsys = control.TransferFunction(num, den)

#  ------------- Initiate Controller ---------------
Kgain = 100
tau = .025  # 1/intended zero placement
numC = np.array([tau, 1]) * Kgain
Csys = control.TransferFunction(numC, 1)

# ---------------- Multiply the transfer functions -------------
CGsys = control.series(Csys, Gsys)
control.pzmap(CGsys, Plot=True, title='Pole Zero Map of Plant')
print(Csys)
print(Gsys)
print(CGsys)

plt.figure()
tout, y, x = control.forced_response(CGsys, t, step, R_hat_0)
plt.plot(t, y)
plt.show()

# tout,y,x = signal.lsim(CG, step, t, R_hat_0)
# print(y)
# plt.plot(t,y)
# #plt.legend(loc='best')
# plt.show()
Ejemplo n.º 26
0
    for i in range(len(rowArray) - 1):
        if rowArray[i][0] * rowArray[i + 1][0] < 0:
            flag = 1
    if flag == 0:
        print('Stable System! CoolControlEngineer!')
        return True
    else:
        print('System Unstable! Get back to work!')
        return False


# numerator and denominator may be given as input here
num = [30, 150, -900]
# den = [1, 12, 49, 78, 40]

#example1
# den = [1, 1, 10, 72, 152, 240]
#example2
# den = [1, 1, 2, 2, 5]
#example3
den = [1, 2, 11, 18, 18]

# the output can be collected by this variable result
result = checkStability(den)

# confirmation by plotting pole-zero graph on s-plane
p, z = ctrl.pzmap(ctrl.TransferFunction(num, den),
                  Plot=True,
                  title="pole zero plot")
plt.show()
Ejemplo n.º 27
0
import subprocess
import shlex
#end if

p1 = 2 * np.pi * 1e4
p2 = 2 * np.pi * 1e5
H = ((p1 - p2)**2) / (4000 * p1 * p2)

num = [1000]
den = [(1 / (p1 * p2)), ((1 / p1) + (1 / p2)), (1000 * H + 1)]
#den=[(1e-9), (11*1e-5), 3.025]
sys = control.tf(num, den)
s = signal.lti(num, den)
w, mag, phase = signal.bode(s)

pole, zero = control.pzmap(sys, Plot=True, title='Pole Zero Map')
print("Poles are :", pole)
gain_y = np.full((len(w)), 44.3866)
x_val = abs(pole[0])
y_val = 44.3866

plt.figure()
plt.plot(w, mag)
plt.plot(w, gain_y)
plt.plot(x_val, y_val, 'ro')
plt.text(x_val, y_val, "(345575, 44.3866)")
plt.grid()

print("Low frequency Gain ", mag[0])
print("Gain at crossover frequency dB ", 44.3866)
Ejemplo n.º 28
0
b_el, a_el = scipy.signal.ellip(N_el, Rp * -1, Rs * -1, wp1_el, output='ba')


# plot unit circle
def Circle(x, y):
    return (x * x + y * y)


plt.figure(1)
xx = numpy.linspace(-2, 2, 400)
yy = numpy.linspace(-2, 2, 400)
[X, Y] = numpy.meshgrid(xx, yy)

Z = Circle(X, Y)
plt.contour(X, Y, Z, [1])

# zero / pole plot
tf_el = control.TransferFunction(b_el, a_el)
control.pzmap(tf_el)
plt.show()

# plot frequency response
w, h = scipy.signal.freqz(b_el, a_el)
plt.figure(2)
plt.title('Chebyshev Type II Frequency Response')
plt.plot(w, 20 * numpy.log10(abs(h)), 'b')
plt.ylabel('Amplitude [dB]', color='b')
plt.ylim(-120, 10)
plt.xlabel('Frequency [rad/sample]')
plt.show()
Ejemplo n.º 29
0
acbas = co.series(acp, bap)
acbaef = co.feedback(acbas, e, +1)

print(acbaef)

g_poles = co.pole(acbaef)
print("G poles")
for elem in g_poles:
    print(f'{elem: .2f}')

g_zeros = co.zero(acbaef)
print("G zeros")
for elem in g_zeros:
    print(f'{elem: .2f}')

g1_map = co.pzmap(acbaef, plot=True)

t = np.linspace(0, 25, 100)
t1, stp = co.step_response(acbaef, t)
t2, imp = co.impulse_response(acbaef, t)  # Warning for infinite impulse at t=0

plt.figure(2)
plt.plot(t1, stp)
plt.title("Step Response")
plt.ylabel("Amplitude")
plt.xlabel("Time")
plt.grid()

plt.figure(3)
plt.plot(t2, imp)
plt.title("Impulse Response")
    # Hitung eigenvalue dari sistem pegas massa tersebut
    poles = mySys.pole()
    print('Poles sistem adalah: \n', poles, '\n')

    # Nyatakan apakah sistem stabil atau tidak. Apabila nilai poles nya bukan bilangan complex
    # sistem tidak stabil
    if str(type(poles[1])) == "<class 'numpy.float64'>":
        print('===> sistem tidak stabil \n')
    else:
        print('===> sistem stabil \n')

    # Visualisasikan pula lokasi poles dengan memetakannya di ruang kompleks C.
    # Seluruh poles dari sistem yang stabil berada di sebelah kanan sumbu
    # imajiner
    pzmap(mySys)
    #fig = plt.figure()

    # Berikutnya dilakukan perhitungan dinamika sistem pegas-massa
    # Membuat array selang waktu dari 0 sampai 20 dengan time frame 0.05
    dt = 0.05
    t = np.arange(0.0, 20, dt)
    yt = []
    for i in range(len(t)):
        yt.append(-0.5)

    # Mendefinisikan kondisis awal masing-masing state
    vInit = 1.0  # kecepatan awal
    sInit = 0.0  # posisi/simpangan awal

    # Kondisi awal state