Ejemplo n.º 1
0
def train_conv_net(epochs=15,
                   weights_file=MODEL_PATH,
                   dictionary_file=DICT_TRANSFORM_PATH):
    data = get_tokenized_list_of_dicts()
    train, test = train_test_split(data, test_size=0.1, random_state=0)
    cnet = ConvNet(train,
                   test,
                   filter_sizes=[1, 2, 3, 4],
                   n_filters=10,
                   dropout_prob=.7,
                   pool_size=10,
                   hidden_dims=12,
                   embedding_size=64,
                   fc_l2=.05,
                   conv_l2=0.0,
                   balance_classes=True)

    batch_size = 64
    cnet.fit(batch_size, epochs, weights_file)

    predict_proba = cnet.get_predict_proba()
    probs = predict_proba([r['content'] for r in test])
    preds = (probs[:, 0] < .5).astype(int)
    y_test = [row['label'] for row in test]

    print('Mean prediction: {}'.format(np.mean(preds)))
    print(classification_report(y_test, preds))
    print(confusion_matrix(y_test, preds))

    cnet.transform.serialize(dictionary_file)
Ejemplo n.º 2
0
    def __init__(self, seed, n_ensembles, batch_size, root):
        super(MnistOptimizee, self).__init__()

        self.random_state = np.random.RandomState(seed=seed)

        self.n_ensembles = n_ensembles
        self.batch_size = batch_size
        self.root = root

        self.conv_net = ConvNet().to(device)
        self.criterion = nn.CrossEntropyLoss()
        self.data_loader = DataLoader()
        self.data_loader.init_iterators(self.root, self.batch_size)
        self.dataiter_mnist = self.data_loader.dataiter_mnist
        self.testiter_mnist = self.data_loader.testiter_mnist

        self.generation = 0
        self.inputs, self.labels = self.dataiter_mnist()
        self.inputs = self.inputs.to(device)
        self.labels = self.labels.to(device)
        self.test_input, self.test_label = self.testiter_mnist()
        self.test_input = self.test_input.to(device)
        self.test_label = self.test_label.to(device)

        self.timings = {
            'shape_parameters': [],
            'set_parameters': [],
            'set_parameters_cnn': [],
            'shape_parameters_ens': []
        }

        self.length = 0
        for key in self.conv_net.state_dict().keys():
            self.length += self.conv_net.state_dict()[key].nelement()
Ejemplo n.º 3
0
    def __init__(self, seed, n_ensembles, batch_size, root, path):

        self.random_state = np.random.RandomState(seed=seed)

        self.n_ensembles = n_ensembles
        self.batch_size = batch_size
        self.root = root
        self.path = path

        self.conv_net = ConvNet().to(device)
        self.criterion = nn.CrossEntropyLoss()
        self.data_loader = DataLoader()
        self.data_loader.init_iterators(self.root, self.path, self.batch_size)
        self.dataiter_mnist = self.data_loader.dataiter_mnist
        self.testiter_mnist = self.data_loader.testiter_mnist
        self.dataiter_notmnist = self.data_loader.dataiter_notmnist
        self.testiter_notmnist = self.data_loader.testiter_notmnist

        self.generation = 0
        self.inputs, self.labels = self.dataiter_mnist()
        self.test_input, self.test_label = self.testiter_mnist()

        # For plotting
        self.train_pred = []
        self.test_pred = []
        self.train_acc = []
        self.test_acc = []
        self.train_cost = []
        self.test_cost = []
        self.targets = []
        self.output_activity_train = []
        self.output_activity_test = []

        self.targets.append(self.labels.numpy())
Ejemplo n.º 4
0
class Model():
    def __init__(self,
                 num_epochs=5,
                 num_classes=10,
                 batch_size=100,
                 learning_rate=0.001):

        self.num_epochs = num_epochs
        self.num_classes = num_classes
        self.batch_size = batch_size
        self.learning_rate = learning_rate

        self.model = ConvNet(num_classes)

        # Loss and optimizer
        self.criterion = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.Adam(self.model.parameters(),
                                          lr=learning_rate)

    def train(self, train_loader):

        total_step = len(train_loader)

        for epoch in range(self.num_epochs):
            for i, (images, labels) in enumerate(train_loader):
                # Forward pass
                outputs = self.model(images)
                loss = self.criterion(outputs, labels)

                # Backward and optimize
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()

                if (i + 1) % 100 == 0:
                    print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(
                        epoch + 1, self.num_epochs, i + 1, total_step,
                        loss.item()))

    def eval(self, test_loader):

        self.model.eval()

        with torch.no_grad():

            correct = 0
            total = 0

            for images, labels in test_loader:
                outputs = self.model(images)
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()

    def save(self):
        # Save the model checkpoint
        torch.save(self.model.state_dict(), 'model.ckpt')
Ejemplo n.º 5
0
    def __init__(self, seed, n_ensembles, batch_size, root):
        super(MnistFashionOptimizee, self).__init__()

        self.random_state = np.random.RandomState(seed=seed)

        self.n_ensembles = n_ensembles
        self.batch_size = batch_size
        self.root = root

        self.conv_net = ConvNet().to(device)
        self.criterion = nn.CrossEntropyLoss()
        self.data_loader = DataLoader()
        self.data_loader.init_iterators(self.root, self.batch_size)
        self.dataiter_fashion = self.data_loader.dataiter_fashion
        self.dataiter_mnist = self.data_loader.dataiter_mnist
        self.testiter_fashion = self.data_loader.testiter_fashion
        self.testiter_mnist = self.data_loader.testiter_mnist

        self.generation = 0
        # if self.generation % 2 == 0:
        #     self.inputs, self.labels = self.dataiter_fashion()
        # else:
        #     self.inputs, self.labels = self.dataiter_mnist()
        self.inputs, self.labels = self.dataiter_mnist()
        self.inputs = self.inputs.to(device)
        self.labels = self.labels.to(device)
        self.test_input, self.test_label = self.testiter_mnist()
        self.test_input = self.test_input.to(device)
        self.test_label = self.test_label.to(device)

        # For plotting
        self.train_pred = []
        self.test_pred = []
        self.train_acc = []
        self.test_acc = []
        self.train_cost = []
        self.test_cost = []
        self.targets = []
        self.output_activity_train = []
        self.output_activity_test = []

        self.targets.append(self.labels.cpu().numpy())

        # Covariance noise matrix
        self.cov = 0.0
        self.length = 0
        for key in self.conv_net.state_dict().keys():
            self.length += self.conv_net.state_dict()[key].nelement()
    def __init__(self, seed, n_ensembles, batch_size, root):
        super(MnistOptimizee, self).__init__()

        self.random_state = np.random.RandomState(seed=seed)

        self.n_ensembles = n_ensembles
        self.batch_size = batch_size
        self.root = root

        self.conv_net = ConvNet().to(device)
        self.criterion = nn.CrossEntropyLoss()
        self.data_loader = DataLoader()
        self.data_loader.init_iterators(self.root, self.batch_size)
        self.dataiter_mnist = self.data_loader.dataiter_mnist
        self.testiter_mnist = self.data_loader.testiter_mnist

        self.generation = 0
        self.inputs, self.labels = self.dataiter_mnist()
        self.inputs = self.inputs.to(device)
        self.labels = self.labels.to(device)
        self.test_input, self.test_label = self.testiter_mnist()
        self.test_input = self.test_input.to(device)
        self.test_label = self.test_label.to(device)

        # For plotting
        self.train_pred = []
        self.test_pred = []
        self.train_acc = []
        self.test_acc = []
        self.train_cost = []
        self.test_cost = []
        self.train_loss = []
        self.test_loss = []
        self.targets = []
        self.output_activity_train = []
        self.output_activity_test = []
        self.act_func = {'act1': [], 'act2': [], 'act1_mean': [],
                         'act2_mean': [], 'act1_std': [], 'act2_std': [],
                         'act3': [], 'act3_mean': [], 'act3_std': []}
        self.test_act_func = {'act1': [], 'act2': [], 'act1_mean': [],
                              'act2_mean': [], 'act1_std': [], 'act2_std': [],
                              'act3': [], 'act3_mean': [], 'act3_std': []}

        self.targets.append(self.labels.cpu().numpy())
        self.length = 0
        for key in self.conv_net.state_dict().keys():
            self.length += self.conv_net.state_dict()[key].nelement()
Ejemplo n.º 7
0
    def __init__(self,
                 num_epochs=5,
                 num_classes=10,
                 batch_size=100,
                 learning_rate=0.001):

        self.num_epochs = num_epochs
        self.num_classes = num_classes
        self.batch_size = batch_size
        self.learning_rate = learning_rate

        self.model = ConvNet(num_classes)

        # Loss and optimizer
        self.criterion = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.Adam(self.model.parameters(),
                                          lr=learning_rate)
Ejemplo n.º 8
0
def run_experiment(average_gradients, batch_size, iterations, verbose):
    batch_size = batch_size
    tf.reset_default_graph()
    net = ConvNet()

    validation_batch = mnist.test.images
    val_count = validation_batch.shape[0]
    validation_batch = np.reshape(validation_batch, (val_count, 28, 28, 1))
    validation_labels = mnist.test.labels

    net.setup_train(average_gradients=average_gradients)
    training_log = []
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(iterations):
            batch = mnist.train.next_batch(batch_size)
            input_batch = np.reshape(batch[0], (batch_size, 28, 28, 1))
            loss = net.train(sess, input_batch, batch[1])
            if (i + 1) % 100 == 0:
                accuracy = net.evaluate(sess, validation_batch,
                                        validation_labels)
                training_log.append((accuracy, i + 1))
                if verbose:
                    print('[{:d}/{:d}] loss: {:.3g}, accuracy: {:.3g}%'.format(
                        i + 1, iterations, loss, accuracy))
        accuracy = net.evaluate(sess, validation_batch, validation_labels)
        training_log.append((accuracy, iterations))
        best = sorted(training_log, key=lambda x: x[0], reverse=True)[0]
        print('Training finished. Best accuracy: {:.3g} at iteration {:d}.'.
              format(best[0], best[1]))
        return best[0]
Ejemplo n.º 9
0
 def __init__(self, char_num, embedding_size, channels, kernel_size,
              padding_idx, dropout, emb_dropout):
     super(CharEncoder, self).__init__()
     self.embed = nn.Embedding(char_num,
                               embedding_size,
                               padding_idx=padding_idx)
     self.drop = nn.Dropout(emb_dropout)
     self.conv_net = ConvNet(channels, kernel_size, dropout=dropout)
     self.init_weights()
Ejemplo n.º 10
0
 def __init__(self, weight, channels, kernel_size, dropout, emb_dropout):
     super(WordEncoder, self).__init__()
     self.embed = nn.Embedding.from_pretrained(weight, freeze=False)
     self.drop = nn.Dropout(emb_dropout)
     self.conv_net = ConvNet(channels,
                             kernel_size,
                             dropout,
                             dilated=True,
                             residual=False)
Ejemplo n.º 11
0
 def __init__(self, char_num, embedding_size, channels, kernel_size,
              padding_idx, dropout, emb_dropout):  ###初始化时的参数
     super(CharEncoder, self).__init__()
     self.embed = nn.Embedding(
         char_num, embedding_size,
         padding_idx=padding_idx)  ### ce=CharEncoder()时被调用
     ### torch.nn.Embedding(m,n) m表示单词数目,n表示嵌入维度
     self.drop = nn.Dropout(emb_dropout)
     self.conv_net = ConvNet(channels, kernel_size, dropout=dropout)
     self.init_weights()
def perform_inference_on_camera_input(args):

    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FPS, 1)
    haar_face_cascade = cv2.CascadeClassifier(args.haar_classifier_path)
    model = ConvNet()
    loader = tf.train.Saver()
    with tf.Session() as sess:
        # Restore variables from disk.
        sess.run(tf.global_variables_initializer())
        model.restore_from_checkpoint(sess, loader, args.checkpoint_path)
        while True:
            # Capture frame-by-frame
            ret, frame = cap.read()
            faces = haar_face_cascade.detectMultiScale(frame,
                                                       scaleFactor=1.1,
                                                       minNeighbors=5)
            if len(faces) == 1 and ret == True:
                (x, y, w, h) = faces[0]
                croped_img = frame[y:y + h, x:x + w]
                if croped_img.shape[0] > 0 and croped_img.shape[1] > 0:
                    input_image = np.expand_dims(cv2.resize(
                        croped_img, (IMG_HEIGHT, IMG_WIDTH)),
                                                 axis=0)
                    feed_dict_inference = {
                        model.input_images: input_image,
                        model.is_training: False,
                    }
                    predictions = sess.run(model.prediction,
                                           feed_dict_inference)
                    print(predictions)
                    cv2.imshow("Checking images", croped_img)

                    if cv2.waitKey(1) & 0xFF == ord("q"):
                        break

                    sleep(1)

    # When everything done, release the capture
    cap.release()
    cv2.destroyAllWindows()
Ejemplo n.º 13
0
def experiment(threshold,
               iterations,
               train_loss,
               n_conv,
               optimizer,
               batch_size=1,
               batch_norm=False,
               learning_rate=1e-3,
               summary_dir=None):
    model = ConvNet(filters=4,
                    n_conv=n_conv,
                    train_loss=train_loss,
                    batch_norm=batch_norm,
                    optimizer=optimizer,
                    learning_rate=learning_rate,
                    summary_dir=summary_dir)
    print('train_loss:', train_loss.value, 'optimizer:', optimizer.value,
          'n_conv:', n_conv, 'batch_norm:', batch_norm, 'batch_size:',
          batch_size, 'learning_rate:', learning_rate)
    ret = dict()
    val_input_batch, val_output_batch = get_data(threshold, 100, verbose=True)
    best_accuracy = (0.0, 0)
    for i in tqdm(range(iterations)):
        input_batch, output_batch = get_data(threshold, batch_size)
        out = model.train(input_batch, output_batch)
        if i == 0:
            for k in out.keys():
                ret[k] = []
            ret['accuracy'] = []
        for k, v in out.items():
            ret[k].append(v)

        if i % 250 == 0:
            accuracy = model.accuracy(val_input_batch, val_output_batch)
            if accuracy > best_accuracy[0]:
                best_accuracy = (accuracy, i)
            ret['accuracy'].append((i, accuracy))
            #print('[%d] accuracy: %.3g' % (i, accuracy))
    print('Best accuracy %.3g at iteration %d.' % best_accuracy)
    return ret
Ejemplo n.º 14
0
    def __init__(self, model):
        """Loads the specified model for training

        Args:
            model (str): Can be rnn, cnn, or hybrid. Specifies the model to load.
        """
        if model == 'rnn':
            from rnn import Bidirectional_GRU
            self.model = Bidirectional_GRU()
        elif model == 'cnn':
            from conv_net import ConvNet
            self.model = ConvNet()
        elif model == 'hybrid':
            from hybrid_model_attention import HybridModel
            self.model = HybridModel()
Ejemplo n.º 15
0
 def __init__(self):
     super(Discriminator, self).__init__()
     ConvNet.add_conv(self, 3, 64, 4, 4, stride=2, pad=1, wscale=0.02)
     ConvNet.add_batch_normalization(self, 64 * 48 * 48, "Elu")
     ConvNet.add_conv(self, 64, 128, 4, 4, stride=2, pad=1, wscale=0.02)
     ConvNet.add_batch_normalization(self, 128 * 24 * 24, "Elu")
     ConvNet.add_conv(self, 128, 256, 4, 4, stride=2, pad=1, wscale=0.02)
     ConvNet.add_batch_normalization(self, 256 * 12 * 12, "Elu")
     ConvNet.add_conv(self, 256, 512, 4, 4, stride=2, pad=1, wscale=0.02)
     ConvNet.add_batch_normalization(self, 512 * 6 * 6, "Elu")
     ConvNet.add_affine(self, 512 * 6 * 6, 2)
     ConvNet.add_softmax(self)
Ejemplo n.º 16
0
 def __init__(self, nz):
     super(Generator, self).__init__()
     ConvNet.add_affine(self, nz, 512 * 6 * 6, output_shape=(512, 6, 6))
     ConvNet.add_batch_normalization(self, 512 * 6 * 6, "Relu")
     ConvNet.add_deconv(self, 512, 256, 4, 4, stride=2, pad=1, wscale=0.02)
     ConvNet.add_batch_normalization(self, 256 * 12 * 12, "Relu")
     ConvNet.add_deconv(self, 256, 128, 4, 4, stride=2, pad=1, wscale=0.02)
     ConvNet.add_batch_normalization(self, 128 * 24 * 24, "Relu")
     ConvNet.add_deconv(self, 128, 64, 4, 4, stride=2, pad=1, wscale=0.02)
     ConvNet.add_batch_normalization(self, 64 * 48 * 48, "Relu")
     ConvNet.add_deconv(self, 64, 3, 4, 4, stride=2, pad=1, wscale=0.02)
     ConvNet.add_tanh(self)
 def __init__(self):
     super(SimpleConv, self).__init__()
     ConvNet.add_conv(self, 1, 30, 5, 5)
     ConvNet.add_batch_normalization(self, 30 * 24 * 24, "Relu")
     ConvNet.add_pooling(self, 2, 2, stride=2)
     ConvNet.add_affine(self, 30 * 12 * 12, 200)
     ConvNet.add_batch_normalization(self, 200, "Relu")
     ConvNet.add_affine(self, 200, 10)
     ConvNet.add_softmax(self)
Ejemplo n.º 18
0
BATCH_SIZE = 500
BATCHES = 20
TEST_SIZE = 5
IMG_SHAPE = (32, 32, 3)

images = []
for i in range(BATCHES*BATCH_SIZE):
    images.append(load_image(i+1))


puncher = HolePuncher(IMG_SHAPE)

X_train, Y_train = puncher.split_fill_batch(images)

with ConvNet() as conv:
    conv.fit(X_train, Y_train,
             width=IMG_SHAPE[0],
             height=IMG_SHAPE[1],
             batch_size=BATCH_SIZE,
             training_epochs=300,
             learning_rate=0.0001)

    test_images = []
    for i in range(BATCHES*BATCH_SIZE, BATCHES*BATCH_SIZE + TEST_SIZE):
        test_images.append(load_image(i + 1))

    X_test, Y_test = puncher.split_fill_batch(test_images)

    for i in range(X_test.shape[1]):
        x_test, y_test = X_test[:, i], Y_test[:, i]
test_compose = transforms.Compose(common_trans)

d_func = dset.MNIST
train_set = dset.MNIST('data',
                       train=True,
                       transform=train_compose,
                       download=True)
test_set = dset.MNIST('data', train=False, transform=test_compose)
train_loader = torch.utils.data.DataLoader(train_set,
                                           batch_size=256,
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set,
                                          batch_size=256,
                                          shuffle=False)

model = ConvNet(num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)


def test_model():
    # Test the model
    model.eval(
    )  # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
    with torch.no_grad():
        correct = 0
        total = 0
        for images, labels in test_loader:
            images = images.to(device)
Ejemplo n.º 20
0
 def __init__(self):
     super(SimpleConv, self).__init__()
     ConvNet.add_conv(self, 3, 64, 3, 3, pad=1)
     ConvNet.add_batch_normalization(self, 64 * 96 * 96, "Relu")
     ConvNet.add_pooling(self, 2, 2, stride=2)
     ConvNet.add_conv(self, 64, 16, 3, 3, pad=1)
     ConvNet.add_batch_normalization(self, 16 * 48 * 48, "Relu")
     ConvNet.add_pooling(self, 2, 2, stride=2)
     ConvNet.add_affine(self, 16 * 24 * 24, 200)
     ConvNet.add_batch_normalization(self, 200, "Relu")
     ConvNet.add_affine(self, 200, 2)
     ConvNet.add_softmax(self)
Ejemplo n.º 21
0
class MnistOptimizee:
    def __init__(self, seed, n_ensembles, batch_size, root, path):

        self.random_state = np.random.RandomState(seed=seed)

        self.n_ensembles = n_ensembles
        self.batch_size = batch_size
        self.root = root
        self.path = path

        self.conv_net = ConvNet().to(device)
        self.criterion = nn.CrossEntropyLoss()
        self.data_loader = DataLoader()
        self.data_loader.init_iterators(self.root, self.path, self.batch_size)
        self.dataiter_mnist = self.data_loader.dataiter_mnist
        self.testiter_mnist = self.data_loader.testiter_mnist
        self.dataiter_notmnist = self.data_loader.dataiter_notmnist
        self.testiter_notmnist = self.data_loader.testiter_notmnist

        self.generation = 0
        self.inputs, self.labels = self.dataiter_mnist()
        self.test_input, self.test_label = self.testiter_mnist()

        # For plotting
        self.train_pred = []
        self.test_pred = []
        self.train_acc = []
        self.test_acc = []
        self.train_cost = []
        self.test_cost = []
        self.targets = []
        self.output_activity_train = []
        self.output_activity_test = []

        self.targets.append(self.labels.numpy())

    def create_individual(self):
        # get weights, biases from networks and flatten them
        # convolutional network parameters ###
        conv_ensembles = []
        with torch.no_grad():
            # weights for layers, conv1, conv2, fc1
            # conv1_weights = self.conv_net.state_dict()['conv1.weight'].view(-1).numpy()
            # conv2_weights = self.conv_net.state_dict()['conv2.weight'].view(-1).numpy()
            # fc1_weights = self.conv_net.state_dict()['fc1.weight'].view(-1).numpy()

            # bias
            # conv1_bias = self.conv_net.state_dict()['conv1.bias'].numpy()
            # conv2_bias = self.conv_net.state_dict()['conv2.bias'].numpy()
            # fc1_bias = self.conv_net.state_dict()['fc1.bias'].numpy()

            # stack everything into a vector of
            # conv1_weights, conv1_bias, conv2_weights, conv2_bias,
            # fc1_weights, fc1_bias
            # params = np.hstack((conv1_weights, conv1_bias, conv2_weights,
            #                     conv2_bias, fc1_weights, fc1_bias))
            length = 0
            for key in self.conv_net.state_dict().keys():
                length += self.conv_net.state_dict()[key].nelement()

            # conv_ensembles.append(params)
            # l = np.random.uniform(-.5, .5, size=length)
            for _ in range(self.n_ensembles):
                #     stacked = []
                #     for key in self.conv_net.state_dict().keys():
                #         stacked.extend(
                #             self._he_init(self.conv_net.state_dict()[key]))
                #     conv_ensembles.append(stacked)
                # tmp = []
                # for j in l:
                #     jitter = np.random.uniform(-0.1, 0.1) + j
                #     tmp.append(jitter)
                # conv_ensembles.append(tmp)
                conv_ensembles.append(np.random.uniform(-1, 1, size=length))
            # convert targets to numpy()
            targets = tuple([label.numpy() for label in self.labels])
            return dict(conv_params=np.array(conv_ensembles),
                        targets=targets,
                        input=self.inputs.squeeze().numpy())

    @staticmethod
    def _he_init(weights, gain=0):
        """
        He- or Kaiming- initialization as in He et al., "Delving deep into
        rectifiers: Surpassing human-level performance on ImageNet
        classification". Values are sampled from
        :math:`\\mathcal{N}(0, \\text{std})` where

        .. math::
        \text{std} = \\sqrt{\\frac{2}{(1 + a^2) \\times \text{fan\\_in}}}

        Note: Only for the case that the non-linearity of the network
            activation is `relu`

        :param weights, tensor
        :param gain, additional scaling factor, Default is 0
        :return: numpy nd array, random array of size `weights`
        """
        fan_in = torch.nn.init._calculate_correct_fan(weights, 'fan_in')
        stddev = np.sqrt(2. / fan_in * (1 + gain**2))
        return np.random.normal(0, stddev, weights.numel())

    def set_parameters(self, ensembles):
        # set the new parameter for the network
        conv_params = np.mean(ensembles, axis=0)
        ds = self._shape_parameter_to_conv_net(conv_params)
        self.conv_net.set_parameter(ds)
        print('---- Train -----')
        print('Generation ', self.generation)
        generation_change = 8
        dataset_change = 500
        with torch.no_grad():
            inputs = self.inputs
            labels = self.labels

            if self.generation % generation_change == 0 and self.generation < dataset_change:
                self.inputs, self.labels = self.dataiter_mnist()
                print('New MNIST set used at generation {}'.format(
                    self.generation))
                # append the outputs
                self.targets.append(self.labels.numpy())
            elif model.generation >= dataset_change and self.generation % generation_change == 0:
                if model.generation == generation_change:
                    self.test_input, self.test_label = self.testiter_notmnist()
                self.inputs, self.labels = self.dataiter_notmnist()
                print('New notMNIST set used at generation {}'.format(
                    self.generation))
                # append the outputs
                self.targets.append(self.labels.numpy())

            outputs = self.conv_net(inputs)
            self.output_activity_train.append(outputs.numpy())
            conv_loss = self.criterion(outputs, labels).item()
            train_cost = _calculate_cost(_encode_targets(labels, 10),
                                         outputs.numpy(), 'MSE')
            train_acc = score(labels.numpy(), np.argmax(outputs.numpy(), 1))
            print('Cost: ', train_cost)
            print('Accuracy: ', train_acc)
            print('Loss:', conv_loss)
            self.train_cost.append(train_cost)
            self.train_acc.append(train_acc)
            self.train_pred.append(np.argmax(outputs.numpy(), 1))

            print('---- Test -----')
            test_output = self.conv_net(self.test_input)
            test_output = test_output.numpy()
            test_acc = score(self.test_label.numpy(),
                             np.argmax(test_output, 1))
            test_cost = _calculate_cost(_encode_targets(self.test_label, 10),
                                        test_output, 'MSE')
            print('Test accuracy', test_acc)
            self.test_acc.append(test_acc)
            self.test_pred.append(np.argmax(test_output, 1))
            self.test_cost.append(test_cost)
            self.output_activity_test.append(test_output)
            print('-----------------')
            conv_params = []
            for c in ensembles:
                ds = self._shape_parameter_to_conv_net(c)
                self.conv_net.set_parameter(ds)
                conv_params.append(self.conv_net(inputs).numpy().T)

            outs = {
                'conv_params': np.array(conv_params),
                'conv_loss': float(conv_loss),
                'input': self.inputs.squeeze().numpy(),
                'targets': self.labels.numpy()
            }
        return outs

    def _shape_parameter_to_conv_net(self, params):
        param_dict = dict()
        start = 0
        for key in self.conv_net.state_dict().keys():
            shape = self.conv_net.state_dict()[key].shape
            length = self.conv_net.state_dict()[key].nelement()
            end = start + length
            param_dict[key] = params[start:end].reshape(shape)
            start = end
        return param_dict
Ejemplo n.º 22
0
import pandas as pd
from numpy import array
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from clean_text import CleanText
from encode_text import EncodeText
from conv_net import ConvNet

df = pd.read_pickle('./data.pkl')
ct = CleanText()
encoder = EncodeText()

df['clean_text'] = df['ticket_text'].apply(lambda x: ct.prepare_text(x))

model = ConvNet()

trainLines, trainLabels = df['clean_text'], df['issue']

lb = LabelBinarizer()
transformed_labels = lb.fit_transform(trainLabels)

X_train, X_test, y_train, y_test = train_test_split(trainLines, transformed_labels, test_size=.2, random_state=42, stratify=transformed_labels)


length = encoder.max_length(X_train)
vocab_size = encoder.vocab_size(X_train)
X_train = encoder.encode_text(X_train)
X_test = encoder.encode_text(X_test, test_data=True)

encoder.save_encoder('./encoder.pkl')
encoder.save_encoder_variables('./encoder_variables')
Ejemplo n.º 23
0
class MnistOptimizee(torch.nn.Module):
    def __init__(self, seed, n_ensembles, batch_size, root):
        super(MnistOptimizee, self).__init__()

        self.random_state = np.random.RandomState(seed=seed)

        self.n_ensembles = n_ensembles
        self.batch_size = batch_size
        self.root = root

        self.conv_net = ConvNet().to(device)
        self.criterion = nn.CrossEntropyLoss()
        self.data_loader = DataLoader()
        self.data_loader.init_iterators(self.root, self.batch_size)
        self.dataiter_mnist = self.data_loader.dataiter_mnist
        self.testiter_mnist = self.data_loader.testiter_mnist

        self.generation = 0
        self.inputs, self.labels = self.dataiter_mnist()
        self.inputs = self.inputs.to(device)
        self.labels = self.labels.to(device)
        self.test_input, self.test_label = self.testiter_mnist()
        self.test_input = self.test_input.to(device)
        self.test_label = self.test_label.to(device)

        self.timings = {
            'shape_parameters': [],
            'set_parameters': [],
            'set_parameters_cnn': [],
            'shape_parameters_ens': []
        }

        self.length = 0
        for key in self.conv_net.state_dict().keys():
            self.length += self.conv_net.state_dict()[key].nelement()

    def create_individual(self):
        # get weights, biases from networks and flatten them
        # convolutional network parameters ###
        conv_ensembles = []
        with torch.no_grad():
            # weights for layers, conv1, conv2, fc1
            # conv1_weights = self.conv_net.state_dict()['conv1.weight'].view(-1).numpy()
            # conv2_weights = self.conv_net.state_dict()['conv2.weight'].view(-1).numpy()
            # fc1_weights = self.conv_net.state_dict()['fc1.weight'].view(-1).numpy()

            # bias
            # conv1_bias = self.conv_net.state_dict()['conv1.bias'].numpy()
            # conv2_bias = self.conv_net.state_dict()['conv2.bias'].numpy()
            # fc1_bias = self.conv_net.state_dict()['fc1.bias'].numpy()

            # stack everything into a vector of
            # conv1_weights, conv1_bias, conv2_weights, conv2_bias,
            # fc1_weights, fc1_bias
            # params = np.hstack((conv1_weights, conv1_bias, conv2_weights,
            #                     conv2_bias, fc1_weights, fc1_bias))
            # length = 0
            # for key in self.conv_net.state_dict().keys():
            #     length += self.conv_net.state_dict()[key].nelement()

            # conv_ensembles.append(params)
            # l = np.random.uniform(-.5, .5, size=length)
            for _ in range(self.n_ensembles):
                #     stacked = []
                #     for key in self.conv_net.state_dict().keys():
                #         stacked.extend(
                #             self._he_init(self.conv_net.state_dict()[key]))
                #     conv_ensembles.append(stacked)
                # tmp = []
                # for j in l:
                #     jitter = np.random.uniform(-0.1, 0.1) + j
                #     tmp.append(jitter)
                # conv_ensembles.append(tmp)
                conv_ensembles.append(
                    np.random.normal(0, 0.1, size=self.length))
            return dict(conv_params=torch.as_tensor(conv_ensembles,
                                                    device=device),
                        targets=self.labels,
                        input=self.inputs.squeeze())

    def load_model(self, path='conv_params.npy'):
        print('Loading model from path: {}'.format(path))
        conv_params = np.load(path).item()
        conv_ensembles = conv_params.get('ensemble')
        return dict(conv_params=torch.as_tensor(conv_ensembles, device=device),
                    targets=self.labels,
                    input=self.inputs.squeeze())

    @staticmethod
    def _he_init(weights, gain=0):
        """
        He- or Kaiming- initialization as in He et al., "Delving deep into
        rectifiers: Surpassing human-level performance on ImageNet
        classification". Values are sampled from
        :math:`\\mathcal{N}(0, \\text{std})` where

        .. math::
        \text{std} = \\sqrt{\\frac{2}{(1 + a^2) \\times \text{fan\\_in}}}

        Note: Only for the case that the non-linearity of the network
            activation is `relu`

        :param weights, tensor
        :param gain, additional scaling factor, Default is 0
        :return: numpy nd array, random array of size `weights`
        """
        fan_in = torch.nn.init._calculate_correct_fan(weights, 'fan_in')
        stddev = np.sqrt(2. / fan_in * (1 + gain**2))
        return np.random.normal(0, stddev, weights.numel())

    def set_parameters(self, ensembles):
        # set the new parameter for the network
        conv_params = ensembles.mean(0)
        t = time.time()
        ds = self._shape_parameter_to_conv_net(conv_params)
        self.timings['shape_parameters_ens'].append(time.time() - t)
        t = time.time()
        self.conv_net.set_parameter(ds)
        self.timings['set_parameters_cnn'].append(time.time() - t)
        print('---- Train -----')
        print('Generation ', self.generation)
        generation_change = 1
        with torch.no_grad():
            inputs = self.inputs.to(device)
            labels = self.labels.to(device)

            if self.generation % generation_change == 0:
                self.inputs, self.labels = self.dataiter_mnist()
                self.inputs = self.inputs.to(device)
                self.labels = self.labels.to(device)
                print('New MNIST set used at generation {}'.format(
                    self.generation))

            outputs, act1, act2 = self.conv_net(inputs)
            conv_loss = self.criterion(outputs, labels).item()
            train_cost = _calculate_cost(_encode_targets(labels, 10),
                                         F.softmax(outputs, dim=1), 'MSE')
            train_acc = score(labels, torch.argmax(F.softmax(outputs, dim=1),
                                                   1))
            print('Cost: ', train_cost)
            print('Accuracy: ', train_acc)
            print('Loss:', conv_loss)

            print('---- Test -----')
            test_output, act1, act2 = self.conv_net(self.test_input)
            test_loss = self.criterion(test_output, self.test_label).item()
            test_acc = score(self.test_label, torch.argmax(test_output, 1))
            test_cost = _calculate_cost(_encode_targets(self.test_label, 10),
                                        test_output, 'MSE')
            print('Test accuracy', test_acc)
            print('Test loss: {}'.format(test_loss))
            print('-----------------')
            conv_params = []
            for idx, c in enumerate(ensembles):
                t = time.time()
                ds = self._shape_parameter_to_conv_net(c)
                self.timings['shape_parameters'].append(time.time() - t)
                t = time.time()
                self.conv_net.set_parameter(ds)
                self.timings['set_parameters'].append(time.time() - t)
                params, _, _ = self.conv_net(inputs)
                conv_params.append(params.t())
            conv_params = torch.stack(conv_params)
            outs = {
                'conv_params': conv_params,
                'conv_loss': float(conv_loss),
                'input': self.inputs.squeeze(),
                'targets': self.labels
            }
        return outs

    def _shape_parameter_to_conv_net(self, params):
        param_dict = dict()
        start = 0
        for key in self.conv_net.state_dict().keys():
            shape = self.conv_net.state_dict()[key].shape
            length = self.conv_net.state_dict()[key].nelement()
            end = start + length
            param_dict[key] = params[start:end].reshape(shape)
            start = end
        return param_dict
defn_len = 20
context_len = 50
dropout = 0.75 # Dropout, probability to keep units

import tensorflow as tf
slabel = tf.placeholder("float", [None, label_len, n_input])
tlabel = tf.placeholder("float", [None, label_len, n_input])
sdefn = tf.placeholder("float", [None, defn_len, n_input])
tdefn = tf.placeholder("float", [None, defn_len, n_input])
scontext = tf.placeholder("float", [None, context_len, n_input])
tcontext = tf.placeholder("float", [None, context_len, n_input])
y = tf.placeholder("float", [None, 1])
keep_prob = tf.placeholder(tf.float32)

from conv_net import ConvNet
cn = ConvNet()
src_label_net = cn.conv_net(slabel)
tar_label_net = cn.conv_net(tlabel)
src_defn_net = cn.conv_net(sdefn)
tar_defn_net = cn.conv_net(tdefn)
src_cont_net = cn.conv_net(scontext)
tar_cont_net = cn.conv_net(tcontext)

print src_label_net.get_shape()

with tf.name_scope("dropout"):
    src_label_rep = tf.nn.dropout(src_label_net, keep_prob)
    tar_label_rep = tf.nn.dropout(tar_label_net, keep_prob)
    src_defn_rep = tf.nn.dropout(src_defn_net, keep_prob)
    tar_defn_rep = tf.nn.dropout(tar_defn_net, keep_prob)
    src_cont_rep = tf.nn.dropout(src_cont_net, keep_prob)
Ejemplo n.º 25
0
from optimizer import Adam
from conv_net import ConvNet

(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True,
                                                  flatten=False,
                                                  one_hot_label=True)
train_loss_list = []
train_acc_list = []
test_acc_list = []

iters_num = 10000
batch_size = 100
train_size = x_train.shape[0]
iter_per_epoch = max(train_size / batch_size, 1)

net = ConvNet()
optim = SGD(net.params, lr=0.1, momentum=0.9)
# optim = AdaGrad(net.params)
# optim = Adam(net.params)

for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]

    grad = net.gradient(x_batch, t_batch)
    net.params = optim.update(net.params, grad)

    loss = net.loss(x_batch, t_batch)
    train_loss_list.append(loss)
Ejemplo n.º 26
0
num_images = 150

quot = int(len(training_files) / num_images)
print('quot:', quot)

#Neural Network declarations

num_epochs = 2
num_classes = 2
batch_size = 64  #TO BE CHANGED
learning_rate = 0.001

#Neural Net framework

model = ConvNet()

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                       'min',
                                                       factor=0.9)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

for j in range(0, quot):
    input_tensor_training = []
    block_labels_training = []
    print('This is the ', j + 1, ' set of , ', num_images)
    if (j > 0):
        model = ConvNet()
Ejemplo n.º 27
0
w = compute_class_weight('balanced', np.unique(df['issue']), df['issue'])

weights = {
    0: w[0],
    1: w[1],
    2: w[2],
    3: w[3],
    4: w[4],
    5: w[5],
    6: w[6],
    7: w[7],
    8: w[8],
    9: w[9]
}

model = ConvNet()

trainLines, trainLabels = df['clean_text'], df['issue']

labels = pd.get_dummies(trainLabels)

X_train, X_test, y_train, y_test = train_test_split(trainLines,
                                                    labels,
                                                    test_size=.2,
                                                    random_state=42,
                                                    stratify=labels)

# test_data = pd.concat([pd.DataFrame(X_test), pd.DataFrame(y_test)], axis=1)
# test_data.to_pickle('./test_data.pkl')

length = encoder.max_length(X_train)
Ejemplo n.º 28
0
            loss = criterion(output, target)
            test_loss += loss.item()
            # network prediction
            pred = output.argmax(1, keepdim=True)
            # how many image are correct classified, compare with targets
            ta = pred.eq(target.view_as(pred)).sum().item()
            test_accuracy += ta
            test_acc = score(target.cpu().numpy(),
                             np.argmax(output.cpu().numpy(), 1))
            if idx % 10 == 0:
                print('Test Loss {}, idx {}'.format(
                    loss.item(), idx))

        print('Test accuracy: {} Average test loss: {}'.format(
            100 * test_accuracy / len(test_loader_mnist.dataset),
            test_loss / len(test_loader_mnist.dataset)))


if __name__ == '__main__':
    conv_params = torch.load('conv_params.pt', map_location='cpu')
    ensemble = conv_params['ensemble'].mean(0)
    ensemble = torch.from_numpy(ensemble)
    conv_net = ConvNet()
    ds = shape_parameter_to_conv_net(conv_net, ensemble)
    conv_net.set_parameter(ds)
    criterion = torch.nn.CrossEntropyLoss()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    batch = 64
    train_loader, test_loader = get_data(batch, device)
    test(conv_net, test_loader)
    shuffle=False,
    sampler=torch.utils.data.SubsetRandomSampler(list(range(1000))))

# test_loader = torch.utils.data.DataLoader(
#     datasets.MNIST('../data', train=False, download=True, transform=transforms.Compose([
#             transforms.ToTensor(),
#             ])),
#         batch_size=1, shuffle=False, sampler=torch.utils.data.SubsetRandomSampler(list(
#                                               range(100))))

# Define what device we are using
print("CUDA Available: ", torch.cuda.is_available())
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

pretrained_model = "models/cnn_mnist.ckpt"
model = ConvNet().to(device)
# pretrained_model = "models/lenet_mnist_model.pth"
# model = Net().to(device)
model.load_state_dict(torch.load(pretrained_model, map_location='cpu'))
model.eval()

gp_model, likelihood = load_combined_model('models/gp_mnist.dat')
gp_model.eval()
likelihood.eval()


# FGSM attack code
def fgsm_attack(image, epsilon, data_grad):
    # Collect the element-wise sign of the data gradient
    sign_data_grad = data_grad.sign()
    # Create the perturbed image by adjusting each pixel of the input image
def train_model(train_data_dir: str, val_data_dir: str, save_model_path: str):
    """

    Args:
        data_dir: Where the dataset is

    Returns:

    """
    all_train_image_paths = load_all_image_paths_convnet(train_data_dir)
    all_val_image_paths = load_all_image_paths_convnet(val_data_dir)
    log.info(
        f"{len(all_train_image_paths)} images belonging to the train set...")
    log.info(
        f"{len(all_val_image_paths)} images belonging to the validation set..."
    )
    model = ConvNet()
    log.info("Model built...")
    BEST_VAL_LOSS = sys.maxsize

    saver = tf.train.Saver()
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for e in range(EPOCHS):
            train_loss_epoch = 0.0
            validation_loss_epoch = 0.0
            random.shuffle(all_train_image_paths)
            full_epoch_train = trange(0, len(all_train_image_paths),
                                      BATCH_SIZE)

            for step in full_epoch_train:
                train_image_batch, train_label_batch = load_batch_of_data_convnet(
                    all_train_image_paths[step:step + BATCH_SIZE])
                feed_dict_train = {
                    model.input_images: train_image_batch,
                    model.labels: train_label_batch,
                    model.is_training: True,
                }
                _, train_loss = sess.run([model.train_step, model.loss_fun],
                                         feed_dict_train)
                train_loss_epoch += train_loss
                full_epoch_train.set_description(f"Loss for epoch {e+1}: %g" %
                                                 train_loss_epoch)

            for step in range(0, len(all_val_image_paths), BATCH_SIZE):
                val_image_batch, val_label_batch = load_batch_of_data_convnet(
                    all_train_image_paths[step:step + BATCH_SIZE])
                feed_dict_val = {
                    model.input_images: val_image_batch,
                    model.labels: val_label_batch,
                    model.is_training: False,
                }
                val_loss = sess.run(model.loss_fun, feed_dict_val)
                validation_loss_epoch += val_loss

            print(
                f"The validation loss for epoch {e+1} is: {validation_loss_epoch}"
            )
            if validation_loss_epoch < BEST_VAL_LOSS:
                print("===============================================")
                print(f"Found new best! Saving model on epoch {e+1}...")
                print("===============================================")
                saver.save(sess, f"{save_model_path}")
                BEST_VAL_LOSS = validation_loss_epoch
class MnistOptimizee(torch.nn.Module):
    def __init__(self, n_ensembles, batch_size, root):
        super(MnistOptimizee, self).__init__()

        self.n_ensembles = n_ensembles
        self.batch_size = batch_size
        self.root = root
        self.length = 0

        self.conv_net = ConvNet().to(device)
        self.criterion = nn.CrossEntropyLoss()
        self.data_loader = DataLoader()
        self.data_loader.init_iterators(self.root, self.batch_size)
        self.dataiter_mnist = self.data_loader.dataiter_mnist
        self.testiter_mnist = self.data_loader.testiter_mnist

        self.generation = 0  # iterations
        self.inputs, self.labels = self.dataiter_mnist()
        self.inputs = self.inputs.to(device)
        self.labels = self.labels.to(device)
        self.test_input, self.test_label = self.testiter_mnist()
        self.test_input = self.test_input.to(device)
        self.test_label = self.test_label.to(device)

        # For plotting
        self.train_pred = []
        self.test_pred = []
        self.train_acc = []
        self.test_acc = []
        self.train_cost = []
        self.test_cost = []
        self.train_loss = []
        self.test_loss = []
        self.targets = []
        self.output_activity_train = []
        self.output_activity_test = []
        self.act_func = {
            'act1': [],
            'act2': [],
            'act1_mean': [],
            'act2_mean': [],
            'act1_std': [],
            'act2_std': [],
            'act3': [],
            'act3_mean': [],
            'act3_std': []
        }
        self.test_act_func = {
            'act1': [],
            'act2': [],
            'act1_mean': [],
            'act2_mean': [],
            'act1_std': [],
            'act2_std': [],
            'act3': [],
            'act3_mean': [],
            'act3_std': []
        }

        self.targets.append(self.labels.cpu().numpy())

        for key in self.conv_net.state_dict().keys():
            self.length += self.conv_net.state_dict()[key].nelement()

    def create_individual(self):
        # get weights, biases from networks and flatten them
        # convolutional network parameters
        conv_ensembles = []
        sigma = config['sigma']
        with torch.no_grad():
            for _ in range(self.n_ensembles):
                conv_ensembles.append(
                    np.random.normal(0, sigma, size=self.length))
            return dict(conv_params=torch.as_tensor(np.array(conv_ensembles),
                                                    device=device),
                        targets=self.labels,
                        input=self.inputs.squeeze())

    def load_model(self, path='conv_params.npy'):
        print('Loading model from path: {}'.format(path))
        conv_params = np.load(path).item()
        conv_ensembles = conv_params.get('ensemble')
        return dict(conv_params=torch.as_tensor(np.array(conv_ensembles),
                                                device=device),
                    targets=self.labels,
                    input=self.inputs.squeeze())

    def set_parameters(self, ensembles):
        # set the new parameter for the network
        conv_params = ensembles.mean(0)
        ds = self._shape_parameter_to_conv_net(conv_params)
        self.conv_net.set_parameter(ds)
        print('---- Train -----')
        print('Iteration ', self.generation)
        generation_change = config['repetitions']
        with torch.no_grad():
            inputs = self.inputs.to(device)
            labels = self.labels.to(device)

            if self.generation % generation_change == 0:
                self.inputs, self.labels = self.dataiter_mnist()
                self.inputs = self.inputs.to(device)
                self.labels = self.labels.to(device)
                print('New MNIST set used at generation {}'.format(
                    self.generation))
                # append the outputs
                self.targets.append(self.labels.cpu().numpy())
            # get network predicitions
            outputs, act1, act2 = self.conv_net(inputs)
            act3 = outputs
            # save all important calculations
            self.act_func['act1'] = act1.cpu().numpy()
            self.act_func['act2'] = act2.cpu().numpy()
            self.act_func['act3'] = act3.cpu().numpy()
            self.act_func['act1_mean'].append(act1.mean().item())
            self.act_func['act2_mean'].append(act2.mean().item())
            self.act_func['act3_mean'].append(act3.mean().item())
            self.act_func['act1_std'].append(act1.std().item())
            self.act_func['act2_std'].append(act2.std().item())
            self.act_func['act3_std'].append(act3.std().item())
            self.output_activity_train.append(
                F.softmax(outputs, dim=1).cpu().numpy())
            conv_loss = self.criterion(outputs, labels).item()
            self.train_loss.append(conv_loss)
            train_cost = _calculate_cost(
                _encode_targets(labels, 10),
                F.softmax(outputs, dim=1).cpu().numpy(), 'MSE')
            train_acc = score(
                labels.cpu().numpy(),
                np.argmax(F.softmax(outputs, dim=1).cpu().numpy(), 1))
            print('Cost: ', train_cost)
            print('Accuracy: ', train_acc)
            print('Loss:', conv_loss)
            self.train_cost.append(train_cost)
            self.train_acc.append(train_acc)
            self.train_pred.append(
                np.argmax(F.softmax(outputs, dim=1).cpu().numpy(), 1))

            print('---- Test -----')
            test_output, act1, act2 = self.conv_net(self.test_input)
            test_loss = self.criterion(test_output, self.test_label).item()
            self.test_act_func['act1'] = act1.cpu().numpy()
            self.test_act_func['act2'] = act2.cpu().numpy()
            self.test_act_func['act1_mean'].append(act1.mean().item())
            self.test_act_func['act2_mean'].append(act2.mean().item())
            self.test_act_func['act3_mean'].append(test_output.mean().item())
            self.test_act_func['act1_std'].append(act1.std().item())
            self.test_act_func['act2_std'].append(act2.std().item())
            self.test_act_func['act3_std'].append(test_output.std().item())
            test_output = test_output.cpu().numpy()
            self.test_act_func['act3'] = test_output
            test_acc = score(self.test_label.cpu().numpy(),
                             np.argmax(test_output, 1))
            test_cost = _calculate_cost(
                _encode_targets(self.test_label.cpu().numpy(), 10),
                test_output, 'MSE')
            print('Test accuracy', test_acc)
            print('Test loss: {}'.format(test_loss))
            self.test_acc.append(test_acc)
            self.test_pred.append(np.argmax(test_output, 1))
            self.test_cost.append(test_cost)
            self.output_activity_test.append(test_output)
            self.test_loss.append(test_loss)
            print('-----------------')
            conv_params = []
            for idx, c in enumerate(ensembles):
                ds = self._shape_parameter_to_conv_net(c)
                self.conv_net.set_parameter(ds)
                params, _, _ = self.conv_net(inputs)
                conv_params.append(params.t().cpu().numpy())

            outs = {
                'conv_params': torch.tensor(conv_params).to(device),
                'conv_loss': float(conv_loss),
                'input': self.inputs.squeeze(),
                'targets': self.labels
            }
        return outs

    def _shape_parameter_to_conv_net(self, params):
        """
        Create a dictionary which includes the shapes of the network
        architecture per layer
        """
        param_dict = dict()
        start = 0
        for key in self.conv_net.state_dict().keys():
            shape = self.conv_net.state_dict()[key].shape
            length = self.conv_net.state_dict()[key].nelement()
            end = start + length
            param_dict[key] = params[start:end].reshape(shape)
            start = end
        return param_dict