def __init__(self): c = Convert() x_train, y_train, x_test, y_test = c.getDTOneHotData() self.x_train = np.array(x_train) self.x_test = np.array(x_test) self.y_train = pd.get_dummies(np.array(y_train), prefix="y") self.label_value = y_test #list format of label self.y_test = pd.get_dummies(np.array(y_test), prefix="y") ''' To classify images using a recurrent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. ''' # Parameters self.learning_rate = 0.01 self.training_iters = 300 self.batch_size = len(self.x_train) # forest-net must total data self.display_step = 10 # Network Parameters self.n_input = 418 # feature number self.n_steps = 4 # timesteps self.n_hidden = 128 # hidden layer num of features self.n_classes = 2 # MNIST total classes (0-9 digits) self.forget_bias = 1.0 # forget bias value
def __init__(self): c = Convert() self.x_train, self.y_train, self.x_test, self.y_test = c.get_libsvm_gbdt_data( "common") self.y_input = self.y_test self.y_train = pd.get_dummies(np.array(self.y_train), prefix="y") self.y_test = pd.get_dummies(np.array(self.y_test), prefix="y")
def get_data(self, tag): c = Convert() if tag == "normal": (self.x_train, self.y_train, self.x_test, self.y_test) = c.getDTData() elif tag == "oneHot": (self.x_train, self.y_train, self.x_test, self.y_test) = c.getDTOneHotData()
''' from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import rnn, rnn_cell import numpy as np import pandas as pd import sys sys.path.append("../script") from convert_input import Convert from validation import Validation # Import MNIST data #from tensorflow.examples.tutorials.mnist import input_data #mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) c = Convert() x_train, y_train, x_test, y_test = c.getDTOneHotData() x_train = np.array(x_train) x_test = np.array(x_test) y_train = pd.get_dummies(np.array(y_train)) input_value = y_test y_test = pd.get_dummies(np.array(y_test)) ''' To classify images using a recurrent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. ''' # Parameters learning_rate = 0.01 training_iters = 300
Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import rnn, rnn_cell import pandas as pd import numpy as np import sys sys.path.append("../script") from convert_input import Convert from validation import Validation c = Convert() x_train, y_train, x_test, y_test = c.get_libsvm_gbdt_data("recent") #x_train = np.array(x_train) #x_test = np.array(x_test) print (type(x_train[0]), x_test[0].shape) #exit() def conversion(temp): result = list() for value in temp: result.append(value.todense()) return np.array(result) x_train = conversion(x_train) x_test = conversion(x_test) y_input = y_test y_train = pd.get_dummies(np.array(y_train),prefix="y")