Ejemplo n.º 1
0
def test_dataset():
    """
    Load Virtual MNIST dataset after network creation.
    """
    net = Network("MNIST")
    net.add(Layer("input", shape=784, vshape=(28, 28), colormap="hot", minmax=(0,1)))
    net.add(Layer("hidden1", shape=512, vshape=(16,32), activation='relu', dropout=0.2))
    net.add(Layer("hidden2", shape=512, vshape=(16,32), activation='relu', dropout=0.2))
    net.add(Layer("output", shape=10, activation='softmax'))
    net.connect('input', 'hidden1')
    net.connect('hidden1', 'hidden2')
    net.connect('hidden2', 'output')
    net.compile(optimizer="adam", error="binary_crossentropy")
    net.get_dataset("mnist")
    assert net is not None
    net.dataset.clear()
Ejemplo n.º 2
0
def test_images():
    net = Network("MNIST")
    net.get_dataset("mnist")
    assert net.dataset.inputs.shape == [(28,28,1)]
    net.add(Layer("input", shape=(28, 28, 1), colormap="hot", minmax=(0,1)))
    net.add(FlattenLayer("flatten"))
    net.add(Layer("hidden1", shape=512, vshape=(16,32), activation='relu', dropout=0.2))
    net.add(Layer("hidden2", shape=512, vshape=(16,32), activation='relu', dropout=0.2))
    net.add(Layer("output", shape=10, activation='softmax'))
    net.connect('input', 'flatten')
    net.connect('flatten', 'hidden1')
    net.connect('hidden1', 'hidden2')
    net.connect('hidden2', 'output')
    net.compile(optimizer="adam", error="binary_crossentropy")
    svg = net.to_svg()
    assert svg is not None
    net.dataset.clear()
Ejemplo n.º 3
0
def test_cifar10():
    """
    Test the cifar10 API and training.
    """
    from conx import Network, Layer, Conv2DLayer, MaxPool2DLayer, FlattenLayer

    batch_size = 32
    num_classes = 10
    epochs = 200
    data_augmentation = True
    num_predictions = 20

    net = Network("CIRAR10")
    net.add(Layer("input", (32, 32, 3)))
    net.add(Conv2DLayer("conv1", 32, (3, 3), padding='same', activation='relu'))
    net.add(Conv2DLayer("conv2", 32, (3, 3), activation='relu'))
    net.add(MaxPool2DLayer("pool1", pool_size=(2, 2), dropout=0.25))
    net.add(Conv2DLayer("conv3", 64, (3, 3), padding='same', activation='relu'))
    net.add(Conv2DLayer("conv4", 64, (3, 3), activation='relu'))
    net.add(MaxPool2DLayer("pool2", pool_size=(2, 2), dropout=0.25))
    net.add(FlattenLayer("flatten"))
    net.add(Layer("hidden1", 512, activation='relu', vshape=(16, 32), dropout=0.5))
    net.add(Layer("output", num_classes, activation='softmax'))
    net.connect()

    # initiate RMSprop optimizer
    opt = RMSprop(lr=0.0001, decay=1e-6)
    net.compile(error='categorical_crossentropy',
                optimizer=opt)
    net.get_dataset("cifar10")
    widget = net.dashboard()
    widget.goto("begin")
    widget.goto("next")
    widget.goto("end")
    widget.goto("prev")
    widget.prop_one()
    net.dataset.slice(10)
    net.dataset.shuffle()
    net.dataset.split(.5)
    net.train(plot=False)
    net.propagate(net.dataset.inputs[0])
    net.dataset.clear()