def test_flip_maze_twice(width, height):
    maze = generate_random_maze(width, height, 0.1)

    maze_flipped = flip_maze(flip_maze(maze))

    assert maze._horizontal_walls == maze_flipped._horizontal_walls
    assert maze_flipped._vertical_walls == maze._vertical_walls
def test_rotate_maze_clockwise_4times(width, height):
    maze = generate_random_maze(width, height, 0.1)

    maze_rotated = rotate_maze_clockwise(maze)
    maze_rotated = rotate_maze_clockwise(maze_rotated)
    maze_rotated = rotate_maze_clockwise(maze_rotated)
    maze_rotated = rotate_maze_clockwise(maze_rotated)

    assert maze_rotated._horizontal_walls == maze._horizontal_walls
    assert maze_rotated._vertical_walls == maze._vertical_walls
def test_flip_maze(width, height):
    maze = generate_random_maze(width, height, 0.1)

    maze_flipped = flip_maze(maze)

    assert maze._horizontal_walls == [
        walls[::-1] for walls in maze_flipped._horizontal_walls
    ]
    assert maze_flipped._vertical_walls == [
        walls[::-1] for walls in maze._vertical_walls
    ]
def test_rotate_observations(width, height):
    maze = generate_random_maze(width, height, 0.1)
    agent = DummyAgent()
    Game(maze, agent, [(width // 2, height // 2)], (0, 0)).play(30)

    maze_rotated = rotate_maze_clockwise(maze)
    agent2 = DummyAgent(list(map(data_utils.rotate_direction_id, agent.move_dir_ids)))
    Game(
        maze_rotated, agent2, [(height - height // 2 - 1, width // 2)], (width - 1, 0)
    ).play(30)

    assert agent2.observations == data_utils.rotate_observations(agent.observations)
def test_rotate_observations_4times(width, height):
    maze = generate_random_maze(width, height, 0.1)
    agent = DummyAgent()
    Game(maze, agent, [(width // 2, height // 2)], (0, 0)).play(30)

    rotated_dir_ids = agent.move_dir_ids
    rotated_observations = agent.observations
    for _ in range(4):
        rotated_dir_ids = list(map(data_utils.rotate_direction_id, rotated_dir_ids))
        rotated_observations = data_utils.rotate_observations(rotated_observations)

    assert agent.move_dir_ids == rotated_dir_ids
    assert agent.observations == rotated_observations
def test_flip_observations_twice(width, height):
    maze = generate_random_maze(width, height, 0.1)
    agent = DummyAgent()
    Game(maze, agent, [(width // 2, height // 2)], (0, 0)).play(30)

    assert agent.move_dir_ids == list(
        map(
            data_utils.flip_direction_id,
            map(data_utils.flip_direction_id, agent.move_dir_ids),
        )
    )
    assert agent.observations == data_utils.flip_observations(
        data_utils.flip_observations(agent.observations)
    )
def test_rotate_maze_clockwise(width, height):
    maze = generate_random_maze(width, height, 0.1)

    maze_rotated = rotate_maze_clockwise(maze)

    def rotate_2d_list(list2d):
        transposed = [[] for _ in range(len(list2d[0]))]
        for row in list2d[::-1]:
            for i, x in enumerate(row):
                transposed[i].append(x)
        return transposed

    assert maze_rotated._horizontal_walls == rotate_2d_list(
        maze._vertical_walls)
    assert maze_rotated._vertical_walls == rotate_2d_list(
        maze._horizontal_walls)
Ejemplo n.º 8
0
def main():
    cli = argparse.ArgumentParser()
    cli.add_argument("model_dir")
    cli.add_argument("--size", type=int)
    cli.add_argument("--n-agents", type=int)
    cli.add_argument("--n-games", type=int, default=10000)
    cli.add_argument("--max-game-len", type=int, default=100)
    cli.add_argument("--out")
    opts = cli.parse_args()

    model_dir = opts.model_dir
    if opts.out is None:
        opts.out = os.path.join(model_dir, "test-results.txt")

    with open(os.path.join(model_dir, "config.yml")) as f:
        cfg = yaml.safe_load(f)
    cfg = dacite.from_dict(config_lib.ModelConfig, cfg)
    if opts.size is None:
        opts.size = cfg.maze_size
    if opts.n_agents is None:
        opts.n_agents = cfg.model.max_agents

    session = tf.compat.v1.Session()
    model = agent.AgentModel(cfg.model)
    model_instance = model.build_layers()
    agent_fn = model.create_agent_fn(model_instance, session, True)

    model_instance.load_variables(session, opts.model_dir)

    results = []
    try:
        for _ in tqdm.tqdm(range(opts.n_games), desc=f"testing: {model_dir}"):
            maze = maze_lib.generate_random_maze(opts.size, opts.size, 0.1)
            game = game_lib.Game.generate_random(maze, agent_fn, opts.n_agents)
            agent_fn.init_before_game(opts.n_agents)
            replays = game.play(opts.max_game_len
                                or maze.height * maze.width * 2)

            results.append(list(map(len, replays)))
    except KeyboardInterrupt:
        return

    np.savetxt(opts.out, np.array(results), fmt="%d")
Ejemplo n.º 9
0
def main():
    cli = argparse.ArgumentParser()
    cli.add_argument("model_dir")
    cli.add_argument("--size", type=int)
    cli.add_argument("--n-agents", type=int)
    opts = cli.parse_args()

    model_dir = opts.model_dir

    with open(os.path.join(model_dir, "config.yml")) as f:
        cfg = yaml.safe_load(f)
    cfg = dacite.from_dict(config_lib.ModelConfig, cfg)
    if opts.size is None:
        opts.size = cfg.maze_size
    if opts.n_agents is None:
        opts.n_agents = cfg.model.max_agents

    session = tf.compat.v1.Session()
    model = agent.AgentModel(cfg.model)
    model_instance = model.build_layers()
    agent_fn = model.create_agent_fn(model_instance, session, True)

    model_instance.load_variables(session, opts.model_dir)

    visualizer = Visualizer(
        cell_size_px=100,
        sec_per_turn=0.5,
        move_animation_sec=0.4,
        autoplay=True,
        autoend=False,
    )

    try:
        while True:
            maze = maze_lib.generate_random_maze(opts.size, opts.size, 0.1)
            game = game_lib.Game.generate_random(maze, agent_fn, opts.n_agents)
            agent_fn.init_before_game(opts.n_agents)
            replays = game.play(maze.height * maze.width * 2)

            visualizer.run(game, replays)
    except KeyboardInterrupt:
        return
Ejemplo n.º 10
0
def maze_generator_loop(mazes_queue, maze_size, should_stop, initial_step,
                        end_step, n_workers):
    i = initial_step
    while not should_stop():
        i += 1
        if end_step is not None and i > end_step:
            break
        maze = generate_random_maze(*maze_size, 0.01)
        while not should_stop():
            try:
                mazes_queue.put((i, maze), timeout=1)
            except Full:
                pass
            else:
                break
    if should_stop():
        try:
            while True:
                mazes_queue.get_nowait()
        except Empty:
            pass
    for _ in range(n_workers):
        mazes_queue.put((None, None))