Ejemplo n.º 1
0
def _show_marker_det_img_folder(marker_path, img_data_path, det_file_name,
                                block):
    # load detections
    det_file = os.path.join(img_data_path, det_file_name)
    print('\tDetection file: %s' % det_file)
    assert os.path.exists(det_file), 'Could not find detection file.'
    det = json_load(det_file)

    # check for image files
    img_list = find_images(img_data_path)
    print('Found %s images for marker detection.' % len(img_list))

    # sanity check
    assert len(det['p2d']) == len(
        img_list), 'Number of detections and number of images differs.'
    assert len(det['pid']) == len(
        img_list), 'Number of detections and number of images differs.'

    # set up detector
    detector = BoardDetector(marker_path)

    # show
    for idx, img_p in enumerate(img_list):
        img_file = os.path.basename(img_p)
        if img_file not in det['files']:
            print('No detection available for: %s' % img_file)
            continue
        img = cv2.imread(img_p)
        detector.draw_board(img,
                            np.array(det['p2d'][idx]),
                            np.array(det['pid'][idx]),
                            block=block)
Ejemplo n.º 2
0
def _detect_marker_video(marker_path, vid_data_path):
    # set up detector
    detector = BoardDetector(marker_path)

    # detect board in images
    points2d, point_ids = detector.process_video(vid_data_path)

    # image shape
    cap = cv2.VideoCapture(vid_data_path)
    w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    img_shape = (h, w)
    return points2d, point_ids, img_shape, vid_data_path, os.path.dirname(
        vid_data_path)
Ejemplo n.º 3
0
def _detect_marker_img_folder(marker_path, img_data_path, verbose):
    # check for image files
    img_list = find_images(img_data_path)
    if verbose > 1:
        print('Found %s images for marker detection.' % len(img_list))

    # set up detector
    detector = BoardDetector(marker_path)

    # detect board in images
    points2d, point_ids = detector.process_image_batch(img_list)

    # image shape
    img_shape = cv2.imread(img_list[0]).shape[:2]

    files = [os.path.basename(x) for x in img_list]
    return points2d, point_ids, img_shape, files, img_data_path
Ejemplo n.º 4
0
def _show_marker_det_video(marker_path, video_path, det_file_name, block):
    # load detections
    data_path = os.path.dirname(video_path)
    det_file = os.path.join(data_path, det_file_name)
    print('\tDetection file: %s' % det_file)
    assert os.path.exists(det_file), 'Could not find detection file.'
    det = json_load(det_file)

    # check video path
    video = cv2.VideoCapture(video_path)
    num_frames = video.get(cv2.CAP_PROP_FRAME_COUNT)
    print('Found video with %d frames.' % num_frames)

    # sanity check
    assert len(
        det['p2d']
    ) == num_frames, 'Number of detections and number of frames differs.'
    assert len(
        det['pid']
    ) == num_frames, 'Number of detections and number of frames differs.'

    # set up detector
    detector = BoardDetector(marker_path)

    # show
    idx = 0
    while True:
        if not video.isOpened():
            break
        ret, img = video.read()

        if not ret:
            break

        detector.draw_board(img,
                            np.array(det['p2d'][idx]),
                            np.array(det['pid'][idx]),
                            block=block)

        idx += 1
Ejemplo n.º 5
0
def test_board_pose_estimator(show=False):
    """ Test detecting Boards in images. """
    import cv2
    from utils.general_util import json_load
    from core.BoardDetector import BoardDetector
    img_list = ['./data/calib_test_data/real/april_board_tags_sample.JPG']
    assert os.path.exists(img_list[0]), 'Image file not found.'

    detector = BoardDetector(
        './data/calib_test_data/marker_32h11b2_4x4x_7cm.json')
    point_coords_frames, point_ids_frames = detector.process_image_batch(
        img_list)
    gt1 = json_load('data/calib_test_data/real/gt_det1.json')
    _same(point_coords_frames[0], gt1['c'])
    _same(point_ids_frames[0], gt1['i'])

    if show:
        for img_path, points, point_ids in zip(img_list, point_coords_frames,
                                               point_ids_frames):
            image = cv2.imread(img_path)
            detector.draw_board(image, points, point_ids, linewidth=2)

    detector = BoardDetector(
        './data/calib_test_data/marker_16h5b1_4x4x_15cm.json')
    point_coords_frames, point_ids_frames = detector.process_image_batch(
        img_list)
    gt2 = json_load('data/calib_test_data/real/gt_det2.json')
    _same(point_coords_frames[0], gt2['c'])
    _same(point_ids_frames[0], gt2['i'])

    if show:
        for img_path, points, point_ids in zip(img_list, point_coords_frames,
                                               point_ids_frames):
            image = cv2.imread(img_path)
            detector.draw_board(image, points, point_ids, linewidth=2)

    print('SUCCESS: test_board_pose_estimator')
Ejemplo n.º 6
0
def calc_intrinsics(marker_path,
                    data_path,
                    det_file_name,
                    output_file=None,
                    estimate_dist=True,
                    dist_complexity=5,
                    cache=False,
                    verbose=0):
    if os.path.isdir(data_path):
        base_dir = data_path
    else:
        base_dir = os.path.dirname(data_path)

    # try to load precomputed
    if output_file is not None:
        calib_file = os.path.join(base_dir, output_file)
        if cache and os.path.exists(calib_file):
            if verbose > 0:
                print('Loading intrinsic calibration from: %s' % calib_file)
            calib = json_load(calib_file)
            return np.array(calib['K']), np.array(calib['dist'])

    if verbose > 0:
        print('Calculating intrinsic calibration for:')
        print('\tData path: %s' % data_path)
        print('\tMarker file: %s' % marker_path)

    # set up detector and estimator
    detector = BoardDetector(marker_path)

    if os.path.isdir(data_path):
        if verbose > 0:
            print('\tAssuming: Folder of images.')
        base_dir = data_path
    else:
        if verbose > 0:
            print('\tAssuming: Video file.')
        base_dir = os.path.dirname(data_path)

    # check for detections
    if det_file_name is None:
        det = detect_marker(marker_path,
                            data_path,
                            cache=cache,
                            verbose=verbose - 1)
    else:
        detections_file = os.path.join(base_dir, det_file_name)

        if not os.path.exists(detections_file):
            if verbose > 1:
                print(
                    'Could not locate marker detections. Running detector now and saving them to folder.'
                )
            det = detect_marker(marker_path,
                                data_path,
                                det_file_name,
                                verbose=verbose - 1)

        else:
            det = json_load(detections_file)

    # give points unique ids
    max_num_pts = len(detector.object_points)
    p2d, pid, p3dm, fid = enumerate_points(detector, det['p2d'], det['pid'],
                                           max_num_pts)
    if verbose > 0:
        print('Found %d unique points to estimate intrinsics from.' %
              pid.shape[0])

    # estimate intrinsics
    K, dist = estimate_intrinsics(p2d,
                                  fid,
                                  p3dm,
                                  det['img_shape'],
                                  estimate_dist=estimate_dist,
                                  dist_complexity=dist_complexity,
                                  verbose=verbose)

    # save intrinsics
    if output_file is not None:
        calib = {'K': K, 'dist': dist}
        json_dump(calib_file, calib, verbose=verbose > 0)
    return K, dist
Ejemplo n.º 7
0
def check_extrinsics(marker_path, data_path, cam_pat, run_pat, K, dist, M,
                     verbose):
    # find input data
    base_path, img_shapes, data, cam_ids = find_data(data_path, cam_pat,
                                                     run_pat)

    # get detections
    det = list()
    for x in data:
        det.append(
            detect_marker(marker_path,
                          x,
                          output_file=None,
                          cache=False,
                          verbose=False))

    # uniquely number detections
    detector = BoardDetector(marker_path)
    tagpose = TagPoseEstimator(detector.object_points)
    p2d, pid, p3d, fid, cid, mid = enumerate_points(det,
                                                    detector.object_points)

    # calculate object poses and pick greedily
    scores_object, T_obj2cam = estimate_and_score_object_poses(
        tagpose, p2d, cid, fid, mid, K, dist)
    object_poses = greedy_pick_object_pose(scores_object, T_obj2cam, M,
                                           verbose)
    point3d_coord, pid2d_to_pid3d = calc_3d_object_points(
        tagpose.object_points, object_poses, fid, cid, mid)

    # find reprojection error
    err_mean, error_per_cam = calculate_reprojection_error(
        p2d,
        point3d_coord,
        pid2d_to_pid3d,
        K,
        dist,
        M,
        cid,
        return_cam_wise=True)

    # give some output of the results
    hist_per_cam = dict()
    print('Error per cam:')
    for cid, error_cam in error_per_cam.items():
        y, x = np.histogram(error_cam)
        x = 0.5 * (x[:-1] + x[1:])
        hist_per_cam[cid] = (x, y)
        print('\t> Cam%d: %.3f (px)' % (cid, np.mean(error_cam)))
    print('Mean error: %.2f pixels' % err_mean)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    for cid, (x, y) in hist_per_cam.items():
        ax.plot(x, y, label='cam%d' % cid)
    plt.legend()
    plt.title('Reprojection error distribution')
    plt.xlabel('Pixels')
    plt.xlabel('Occurences')
    img = fig2data(fig)
    cv2.imshow('stats', img[:, :, ::-1])
    cv2.waitKey()
Ejemplo n.º 8
0
def show_intrinsic_calib(marker_path, data_path, det_file_name,
                         calib_file_name, show_size):
    print('Showing marker detections for:')
    print('\tData path: %s' % data_path)
    print('\tMarker file: %s' % marker_path)

    if os.path.isdir(data_path):
        print('\tAssuming: Folder of images.')
        base_dir = data_path
    else:
        print('\tAssuming: Video file.')
        base_dir = os.path.dirname(data_path)

    det_file = os.path.join(base_dir, det_file_name)
    calib_file = os.path.join(base_dir, calib_file_name)
    print('\tDetection file: %s' % det_file)
    print('\tCalib file: %s' % calib_file)

    # load detections
    assert os.path.exists(det_file), 'Could not find detection file.'
    det = json_load(det_file)

    # load calibration
    assert os.path.exists(calib_file), 'Could not find detection file.'
    calib = json_load(calib_file)
    K, dist = np.array(calib['K']), np.array(calib['dist'])

    img = _read_first_frame(data_path, det)

    # set up detector
    detector = BoardDetector(marker_path)

    # calculate statistics
    err, angle, depths = list(), list(), list()
    for p2d, pid in tqdm(zip(det['p2d'], det['pid']),
                         total=len(det['p2d']),
                         desc='Calculating stats'):
        if len(pid) == 0:
            continue

        p3d_m = detector.object_points[pid]
        a, d, e = _calc_board_stats(np.array(p2d), p3d_m, K, dist)
        angle.append(a)
        depths.extend(d)
        err.extend(e)

    # Print reprojection error
    err = np.array(err)
    print('Reprojection error: min=%.2f, mean=%.2f, max=%.2f (px)' %
          (err.min(), err.mean(), err.max()))

    # show error and depth distribution
    angle = np.array(angle)
    angle = angle[~np.isnan(angle)]
    depths = np.array(depths)

    fig = plt.figure()
    ax1 = fig.add_subplot(121)
    ax2 = fig.add_subplot(122)
    ax1.hist(depths), ax1.set_title('distance to camera'), ax1.set_xlim(
        [0, depths.max()])
    ax2.hist(angle), ax2.set_title('angle wrt camera'), ax2.set_xlim([0, 180])
    stats_img = fig2data(fig)
    cv2.imshow('stats', stats_img[:, :, ::-1])
    cv2.waitKey(100)

    # show image space coverage
    pts_all = np.concatenate([d for d in det['p2d'] if len(d) > 0], 0)
    print('Showing %d detected points' % pts_all.shape[0])
    _show_coverage(img, pts_all, show_size)

    return det