def train(self):
     # Script arguments
     args = self._parse_args()
     # Set custom seed before doing anything
     common.set_custom_seed(args.seed)
     # Create directory to save plots, models, results, etc
     log_path = common.create_log_dir(args.exp_id, args.task, args.loss)
     print(f"Logging to {log_path}")
     # Load dataset
     train, nclass = self._load_dataset(args.loss, args.batch_size)
     # Create model
     config = common.get_config(args.loss, self.nfeat, nclass, self.task,
                                args.margin)
     model = self._create_model(config)
     # Train and evaluation plugins
     test_plugins = []
     train_plugins = []
     # Logging configuration
     self._logging(args.log_interval, log_path, train, train_plugins,
                   test_plugins)
     # Model saving configuration
     self._model_saving(args.save, train_plugins, test_plugins)
     # Plotting configuration
     self._plotting(args.plot, train_plugins, test_plugins)
     # Other useful plugins
     self._on_all_plugins_added(train_plugins, test_plugins)
     # Evaluation configuration
     train_plugins.append(
         self._create_evaluator(args.loss, args.batch_size, config,
                                test_plugins))
     # Training configuration
     trainer = Trainer(args.loss,
                       model,
                       config.loss,
                       train,
                       config.optimizer(model, self.task, args.lr),
                       model_loader=ModelLoader(args.recover)
                       if args.recover is not None else None,
                       callbacks=train_plugins)
     print(f"[LR: {args.lr}]")
     print(f"[Batch Size: {args.batch_size}]")
     print(f"[Epochs: {args.epochs}]")
     print()
     # Start training
     trainer.train(args.epochs)
Ejemplo n.º 2
0
# Model saving configuration
print(f"[Model Saving: {common.enabled_str(args.save)}]")
if args.save:
    test_callbacks.append(
        BestModelSaver(task, args.loss, log_path, args.exp_id))

# Evaluation configuration
metric = KNNAccuracyMetric(config.test_distance)
train_callbacks.append(
    ClassAccuracyEvaluator(common.DEVICE, dev, metric, test_callbacks))

# Training configuration
trainer = Trainer(args.loss,
                  model,
                  config.loss,
                  train,
                  config.optimizer(model, task, args.lr),
                  model_loader=ModelLoader(args.recover)
                  if args.recover is not None else None,
                  callbacks=train_callbacks)
print(f"[LR: {args.lr}]")
print(f"[Batch Size: {args.batch_size}]")
print(f"[Epochs: {args.epochs}]")
print()

# Start training
trainer.train(
    args.epochs, log_path,
    common.get_basic_plots(args.lr, args.batch_size, 'Accuracy', 'green'))
Ejemplo n.º 3
0
dev_evaluator = Evaluator(dev, metric, 'dev', test_callbacks)
test_evaluator = Evaluator(
    test,
    metric,
    'test',
    callbacks=[MetricFileLogger(log_path=join(log_path, 'test-metric.log'))])
train_callbacks.extend([dev_evaluator, test_evaluator])

# Training configuration
optim = config.optimizer(model, lr=args.lr)
model_loader = ModelLoader(
    args.recover, args.recover_optim) if args.recover is not None else None
trainer = Trainer(args.loss,
                  model,
                  config.loss,
                  train,
                  optim,
                  model_loader=model_loader,
                  callbacks=train_callbacks,
                  last_metric_fn=lambda: dev_evaluator.last_metric)

print()

# Start training
plots = builders.build_essential_plots(args.lr, args.batch_size, 'Macro F1',
                                       'green')
trainer.train(args.epochs, log_path, plots)

# Dump and print results
best_epoch = dev_evaluator.best_epoch
best_dev = dev_evaluator.best_metric
best_test = test_evaluator.results[dev_evaluator.best_epoch - 1]
Ejemplo n.º 4
0
parser.add_argument('--gpu', type=str, default='0,1', help='assign multi-gpus by comma concat')
parser.add_argument('--cfg', type=str, help='experiment configure file name')


args = parser.parse_args()
if args.cfg:
    update_config(args.cfg)
torch.manual_seed(args.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
print("Work on GPU: ", os.environ['CUDA_VISIBLE_DEVICES'])

from core.base import Trainer, Tester, LiftTrainer, LiftTester


if cfg.MODEL.name == 'pose2mesh_net':
    trainer = Trainer(args, load_dir='')
    tester = Tester(args)  # if not args.debug else None
elif cfg.MODEL.name == 'posenet':
    trainer = LiftTrainer(args, load_dir='')
    tester = LiftTester(args)  # if not args.debug else None

print("===> Start training...")
for epoch in range(cfg.TRAIN.begin_epoch, cfg.TRAIN.end_epoch + 1):
    trainer.train(epoch)
    trainer.lr_scheduler.step()

    tester.test(epoch, current_model=trainer.model)

    if epoch > 1:
        is_best = tester.joint_error < min(trainer.error_history['joint'])
    else:
Ejemplo n.º 5
0
    loss = focal_loss()
else:
    loss = nn.BCELoss()

# plt
train_loss_list = []
train_acc_list = []
val_loss_list = []
val_acc_list = []
epoch_list = []
# 获取trainer and tester 且训练
if args.train == "train":
    trainer = Trainer(model=model,
                      optimizer=optimizer,
                      scheduler=exp_lr_scheduler,
                      batch_size=args.batch_size,
                      empochs=args.epoch,
                      train_loader=train_loader,
                      use_cuda=args.use_gpu)
    tester = Tester(val_loader=val_loader,
                    model=model,
                    batch_size=args.batch_size,
                    use_cuda=args.use_gpu)
    # epoch训练
    for epoch in range(start_epoch, args.epoch):
        train_loss, train_acc = trainer.train(epoch=epoch,
                                              criterion_ce=loss,
                                              numclass=num_class)
        val_loss, val_acc = tester.val_test(epoch=epoch,
                                            current_model=trainer.model,
                                            criterion_ce=loss,
                                 config.test_distance, args.eval_interval,
                                 dataset.config, test_callbacks),
    SpeakerVerificationEvaluator(
        'test',
        args.batch_size,
        config.test_distance,
        args.eval_interval,
        dataset.config,
        callbacks=[
            MetricFileLogger(log_path=join(log_path, 'test-metric.log'))
        ])
]
train_callbacks.extend(evaluators)

# Training configuration
trainer = Trainer(args.loss,
                  model,
                  config.loss,
                  train,
                  config.optimizer(model, task, args.lr),
                  model_loader=ModelLoader(args.recover)
                  if args.recover is not None else None,
                  callbacks=train_callbacks)
print(f"[LR: {args.lr}]")
print(f"[Batch Size: {args.batch_size}]")
print(f"[Epochs: {args.epochs}]")
print()

# Start training
trainer.train(args.epochs, log_path, plots)