Ejemplo n.º 1
0
 def __init__(self, parent=None):
     super(Main, self).__init__(parent)
     QMainWindow.__init__(self)
     loadUi('core/window.ui', self) 
     #self.setupUi(self)
     self.setWindowIcon(QIcon('main.ico'))
     
     '''pushButton等控件信号'''
     self.time_point_training.clicked.connect(self.clickedTime_point_training)
     self.pushButton_pause.clicked.connect(self.clickedPause)
     #self.dynamic_display.clicked.connect(self.dynamic_display_click)
     self.change_dynamic.clicked.connect(self.change_dynamic_click)
     self.change_hot.clicked.connect(self.change_hot_click)
     self.commandLink_about.clicked.connect(self.about)
     self.time_point.currentIndexChanged.connect(self.currentIndexChanged)
     
     '''newForm'''
     self.new_dig.clicked.connect(self.test)
     #self.close_signal.connect(self.newForm.close)
     
     '''widget_plot,数据可视化'''
     self.main_widget = QWidget(self)
     self.widget_plot = matplot.MyccMplCanvas(self.main_widget, width=5, height=4, dpi=100)
     self.verticalLayout_cell.addWidget(self.widget_plot)
     
     GlobalMap().set(running_global = 0)
     self.initial_value() #初始化全局变量
     self.timer = QTimer(self) #动态更新全局变量
     self.timer.timeout.connect(self.update_value)
     self.global_temp= GlobalMap().get('all')
Ejemplo n.º 2
0
 def loss(self):
     #绘制损失度动态图
     self.axes.hold(False)
     self.a += [GlobalMap().get('times')]
     self.b += [GlobalMap().get('loss_now') / 100]
     self.axes.plot(self.a, self.b, linewidth=2)
     self.axes.set(xlabel="times",
                   ylabel="loss",
                   title='Real time training state')
     self.draw()
Ejemplo n.º 3
0
    def save_question(self):
        '''询问是否使用历史训练数据,提高速度'''
        reply = QMessageBox.question(self, '已有历史训练数据',
            "你还要重新训练吗?", QMessageBox.Yes | 
            QMessageBox.No, QMessageBox.No)

        if reply == QMessageBox.Yes:
            GlobalMap().set( 
                save_nopass = 0
            )
            
        GlobalMap().set( 
            save_question = 0
        )
Ejemplo n.º 4
0
 def update_value(self):
     '''更新UI状态显示'''
     self.global_temp= GlobalMap().get('all')
     try:
         if not GlobalMap().get('running_global'):
             time.sleep(0.3)
             self.timer.stop()
             self.initial_value()
         #print(self.global_temp)
         self.progress_num.setValue(self.global_temp['progress_num'])
         self.iter_times.setText(str(self.global_temp['times']))
         self.loss_now.setText(str(self.global_temp['loss_now']))
         self.used_time.display(self.global_temp['used_time'])
     except:
         pass
Ejemplo n.º 5
0
 def dig_change_accept(self):
     '''23小时各小时变化动态图'''
     if GlobalMap().get('running_global'):
         QMessageBox.warning(self, "Warning","Is_running!!!\nMaybe you want to click '停止当前任务'")
         return
     self.initial_value()
     GlobalMap().set(running_global = 1, running_status = 2, time_point = self.time_point.currentIndex(), fix_seed = self.fix_seed.isChecked())
     
     self.update_value()
     
     self.timer.start(1000)
     self.verticalLayout_cell.removeWidget(self.widget_plot)
     self.widget_plot = matplot.MyDig_ChangeMplCanvas(self.main_widget, width=5, height=4, dpi=100)
     self.verticalLayout_cell.addWidget(self.widget_plot)
     self.widget_plot.start()
Ejemplo n.º 6
0
    def start(self):
        self.times = 1
        GlobalMap().set(progress_num=0)
        self.lists = []  #记录时间
        self.list_height = [[], []]  #用于记录高密度的区域
        self.stat = 0
        self.fig.subplots_adjust(left=0.02,
                                 bottom=0.02,
                                 right=0.98,
                                 top=0.92,
                                 hspace=0.04,
                                 wspace=0.02)
        self.axes1 = self.fig.add_subplot(211)
        self.axes2 = self.fig.add_subplot(212)
        for i in range(24):
            self.lists += [i]

        if exists('db/temp/20180515.csv'):
            self.temp1 = DataFrame(read_csv('db/temp/20180515.csv', header=0))
        else:
            self.temp1 = dataclear(20180515).run()

        self.compute_initial_figure()
        self.timer = QTimer(self)
        self.timer.timeout.connect(self.compute_initial_figure)
        self.timer.start(1000)
Ejemplo n.º 7
0
 def pause(self):
     try:
         self.timer.stop()
         self.thread.quit()
     except:
         pass
     GlobalMap().set(running_global=0, )
Ejemplo n.º 8
0
 def clickedTime_point_training(self):
     '''点击单时间的预测'''
     self.initial_value()
     if GlobalMap().get('running_global'):
         QMessageBox.warning(self, "Warning","Is_running!!!\nMaybe you want to click '停止当前任务'")
         return
     
     GlobalMap().set(running_global = 1, running_status = 0, time_point = self.time_point.currentIndex(), fix_seed = self.fix_seed.isChecked())
     self.update_value()
     
     if exists('ckpt/model-'+ str(self.global_temp['time_point']) +'.ckpt.index') and GlobalMap().get('save_question'):         #判断模型是否存在  
         self.save_question()
     
     self.timer.start(600)
     self.verticalLayout_cell.removeWidget(self.widget_plot)
     self.widget_plot = matplot.MySticMplCanvas(self.main_widget, width=5, height=4, dpi=100)
     self.verticalLayout_cell.addWidget(self.widget_plot)
     self.widget_plot.start()
Ejemplo n.º 9
0
 def update_figure(self):
     if GlobalMap().get('userdefined') == 'Null_':  #检测从自定义对话框传递过来的数据
         return
     if not self.begin:  #防止重绘
         return
     self.begin = 0
     GlobalMap().set(time_point=self.times, )
     self.times += 1
     if self.times == 2:
         self.begin = 1
         self.temp0 = NN.main([], [],
                              GlobalMap().get('userdefined'))  #传入BP网络预测
         return
     else:
         temp01 = self.temp0
         self.temp0 = NN.main([], [], temp01)
     imgP = imread('core/map.png', )
     self.axes.imshow(imgP,
                      extent=[112.1495, 112.288, 30.308, 30.391],
                      aspect='auto')
     x = np.array(self.temp0[0])
     y = np.array(self.temp0[1])
     z = gaussian_kde(self.temp0)(self.temp0)  #生成密度颜色
     self.axes.hold(True)
     self.axes.scatter(x, y, marker='.', s=100, c=z, edgecolors='')
     self.axes.grid(True)
     self.axes.set_xlim(112.150, 112.284)
     self.axes.set_ylim(30.309, 30.385)
     self.axes.set(xlabel="longitude", ylabel="latitude")
     self.axes.set_title('The ' + str(self.times) +
                         ':00 ’s distribution prediction')
     self.draw()
     self.begin = 1
     self.axes.hold(False)
     if self.times >= 2:
         self.pause()
    def test(self, a, b, c):
        '''入口'''
        if a == []:  #仅用于自定义模式的预测
            #print(self.ckpt_path, c)
            self.setup([2, self.init_temp['neurons_num'], 2])
            self.saver.Saver().restore(self.session, 'ckpt/modelc-' +
                                       str(self.init_temp['time_point']) +
                                       '.ckpt')  #存在就从模型中恢复变量
            GlobalMap().set(used_time=0, times=0)
            return noturn(self.predict(turn(c)))

        x_data = turn(a)
        y_data = turn(b)
        test_data = turn(c)
        self.setup([2, self.init_temp['neurons_num'], 2])
        if exists(self.ckpt_path +
                  '.index') and GlobalMap().get('save_nopass'):  #判断模型是否存在
            try:
                self.saver.Saver().restore(self.session,
                                           self.ckpt_path)  #存在就从模型中恢复变量
                self.loss = reduce_mean(
                    reduce_sum(square((self.label_layer - self.output_layer)),
                               reduction_indices=[1]))
                loss_now = self.session.run(self.loss,
                                            feed_dict={
                                                self.input_layer: x_data,
                                                self.label_layer: y_data
                                            })
                GlobalMap().set(used_time=0, times=0, loss_now=loss_now)
            except:
                print(2)
                self.train(x_data, y_data)
        else:
            self.train(x_data, y_data)
        GlobalMap().set(running_global=0, )
        return noturn(self.predict(test_data))
Ejemplo n.º 11
0
    def start(self):
        self.times = 1
        GlobalMap().set(progress_num=0)
        self.lists = []
        self.changenum00 = []
        self.changenum01 = []
        for i in range(24):
            self.lists += [i]

        if exists('db/temp/20180515.csv'):
            self.temp1 = DataFrame(read_csv('db/temp/20180515.csv', header=0))
        else:
            self.temp1 = dataclear(20180515).run()

        self.compute_initial_figure()
        self.timer = QTimer(self)
        self.timer.timeout.connect(self.compute_initial_figure)
        self.timer.start(1000)
 def __init__(self, session):
     self.session = session  #记录session
     self.saver = train  #提供Saver服务
     self.loss = None  #记录误差
     self.optimizer = None  #优化器
     self.input_n = 0  #输入维度
     self.hidden_n = 0  #中间层个数
     self.hidden_size = []  #中间层大小
     self.output_n = 0  #输出维度
     self.input_layer = None
     self.hidden_layers = []
     self.output_layer = None
     self.label_layer = None
     self.init_temp = GlobalMap().get('all')  #获取所有前台传递过来的数据
     self.auto_times = 0
     #print(self.init_temp)   #测试用
     self.ckpt_path = 'ckpt/model-' + str(
         self.init_temp['time_point']) + '.ckpt'  #定义训练模型保存位置
     if self.init_temp['fix_seed']:
         set_random_seed(523456789)
Ejemplo n.º 13
0
 def initial_value(self):
     '''初始化全局变量'''
     #print(temp)
     GlobalMap().set(max_itera = self.max_itera.value(), 
             neurons_num = self.neurons_num.value(), 
             dg_initial = self.dg_initial.value(), 
             dg_adaptive = self.dg_adaptive.value(), 
             precision = self.precision.value(), 
             save_question = 1, 
             save_nopass = 1, 
             temp_path = 'temp', 
             fix_auto = self.fix_auto.isChecked()
         )
     for i in range(24):
         if exists('ckpt/model-'+ str(i) +'.ckpt.index'):
             '''每个小时点的训练状况'''
             {0:self.checkBox_0.setChecked, 
             1:self.checkBox_1.setChecked, 
             2:self.checkBox_2.setChecked, 
             3:self.checkBox_3.setChecked, 
             4:self.checkBox_4.setChecked, 
             5:self.checkBox_5.setChecked, 
             6:self.checkBox_6.setChecked, 
             7:self.checkBox_7.setChecked, 
             8:self.checkBox_8.setChecked, 
             9:self.checkBox_9.setChecked, 
             10:self.checkBox_10.setChecked,  
             11:self.checkBox_11.setChecked, 
             12:self.checkBox_12.setChecked, 
             13:self.checkBox_13.setChecked, 
             14:self.checkBox_14.setChecked, 
             15:self.checkBox_15.setChecked, 
             16:self.checkBox_16.setChecked, 
             17:self.checkBox_17.setChecked, 
             18:self.checkBox_18.setChecked, 
             19:self.checkBox_19.setChecked, 
             20:self.checkBox_20.setChecked, 
             21:self.checkBox_21.setChecked, 
             22:self.checkBox_22.setChecked, 
             23:self.checkBox_23.setChecked, 
             }.get(i)(True)
Ejemplo n.º 14
0
    def compute_initial_figure(self, a, b):
        self.timer.stop()
        self.axes.hold(True)
        self.axes.set_title('The ' + str(GlobalMap().get('time_point')) +
                            ':00 ’s distribution prediction')
        x = a[0]
        y = a[1]
        x0 = b[0]
        y0 = b[1]

        imgP = imread('core/map.png', )
        self.axes.imshow(imgP,
                         extent=[112.1495, 112.288, 30.308, 30.391],
                         aspect='auto')

        self.axes.plot(x, y, '.b', markersize=3, label='prediction')  #预测的结果
        self.axes.plot(x0, y0, '.r', markersize=2, label='original')  #期望的结果

        self.axes.grid(True)
        self.axes.legend(shadow=True)
        self.axes.set_xlim(112.150, 112.284)
        self.axes.set_ylim(30.309, 30.385)
        self.axes.set(xlabel="longitude", ylabel="latitude")
        self.draw()
Ejemplo n.º 15
0
    def run(self):
        if self.working == True:
            times = GlobalMap().get('time_point')
            GlobalMap().set(progress_num=0)

            lists = []
            for i in range(24):
                lists += [i]

            GlobalMap().set(progress_num=2)

            if exists('db/temp/20180515.csv') and exists(
                    'db/temp/20180516.csv'):
                temp1 = DataFrame(read_csv('db/temp/20180515.csv', header=0))
                temp2 = DataFrame(read_csv('db/temp/20180516.csv', header=0))
            else:
                temp1 = dataclear(20180515).run()
                temp2 = dataclear(20180516).run()

            GlobalMap().set(progress_num=5)

            temp11 = temp1[temp1['time'] == lists[times - 1]]
            temp12 = temp1[temp1['time'] == lists[times]]
            temp1112 = merge(temp11, temp12, how='outer', on='id').dropna()

            temp21 = temp2[temp2['time'] == lists[times - 1]]
            temp22 = temp2[temp2['time'] == lists[times]]
            temp2122 = merge(temp21, temp22, how='outer', on='id').dropna()

            temp000 = np.vstack((temp1112['x_x'], temp1112['y_x']))
            temp001 = np.vstack((temp1112['x_y'], temp1112['y_y']))

            temp020 = np.vstack((temp2122['x_x'], temp2122['y_x']))
            #temp021 = np.vstack((temp2122['x_y'],temp2122['y_y']))

            cells_array = np.array(NN.main(temp000, temp001, temp020))

            np.save(GlobalMap().get('temp_path') + '/test' + str(times),
                    cells_array)

            GlobalMap().set(progress_num=100, running_global=0)

            self.changed2_signal.emit(1)
Ejemplo n.º 16
0
    def run(self):
        if self.working == True:
            times = GlobalMap().get('time_point')
            GlobalMap().set(progress_num=0)

            lists = []
            for i in range(24):
                lists += [i]

            GlobalMap().set(progress_num=2)

            if exists('db/temp/20180515.csv') and exists(
                    'db/temp/20180516.csv'):
                temp1 = DataFrame(read_csv('db/temp/20180515.csv', header=0))
                temp2 = DataFrame(read_csv('db/temp/20180516.csv', header=0))
            else:
                temp1 = dataclear(20180515).run()
                temp2 = dataclear(20180516).run()

            GlobalMap().set(progress_num=5)

            temp11 = temp1[temp1['time'] == lists[times - 1]]
            temp12 = temp1[temp1['time'] == lists[times]]
            temp1112 = merge(temp11, temp12, how='outer', on='id').dropna()
            '''begin 另一种数据处理方式'''
            #            temp1_x = DataFrame(read_csv('db/temp/20180515-x.csv' ,header=0))
            #            temp1_y = DataFrame(read_csv('db/temp/20180515-y.csv' ,header=0))
            #            temp2_x = DataFrame(read_csv('db/temp/20180516-x.csv' ,header=0))
            #            temp2_y = DataFrame(read_csv('db/temp/20180516-y.csv' ,header=0))
            #
            #            temp11_x = temp1_x[str(lists[times])]
            #            temp11_y = temp1_y[str(lists[times])]
            #            temp12_x = temp2_x[str(lists[times])]
            #            temp12_y = temp2_y[str(lists[times])]
            #
            #            temp21_x = temp1_x[str(lists[times+1])]
            #            temp21_y = temp1_y[str(lists[times+1])]
            #            temp22_x = temp2_x[str(lists[times+1])]
            #            temp22_y = temp2_y[str(lists[times+1])]
            #
            #            cc01 = np.vstack((temp11_x, temp11_y))
            #            cc02 = np.vstack((temp21_x, temp21_y))
            #            cc03 = np.vstack((temp12_x, temp12_y))
            #            cc04 = np.vstack((temp22_x, temp22_y))
            '''end'''

            temp21 = temp2[temp2['time'] == lists[times - 1]]
            temp22 = temp2[temp2['time'] == lists[times]]
            temp2122 = merge(temp21, temp22, how='outer', on='id').dropna()

            temp000 = np.vstack((temp1112['x_x'], temp1112['y_x']))
            temp001 = np.vstack((temp1112['x_y'], temp1112['y_y']))

            temp020 = np.vstack((temp2122['x_x'], temp2122['y_x']))
            temp021 = np.vstack((temp2122['x_y'], temp2122['y_y']))

            #用20180515 T 和 T+1 时刻的训练 来预测  20180516 T 时刻 在 T+1 时刻的分布情况
            cells_array = np.array(NN.main(temp000, temp001, temp020))
            #cells_array = np.array(NN.main(cc01, cc02, cc03 ))

            np.save(GlobalMap().get('temp_path') + '/test' + str(times),
                    cells_array)
            GlobalMap().set(progress_num=100)

            self.changed_signal.emit(cells_array, temp021)
    def train(self, cases, labels):
        '''训练'''
        limit = self.init_temp['max_itera']
        learn_rate = self.init_temp['dg_initial'] * 0.00000001
        self.loss = reduce_mean(
            reduce_sum(square((self.label_layer - self.output_layer)),
                       reduction_indices=[1]))

        learning_rate = placeholder(float32, shape=[])
        #self.train_step = #tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(self.loss)
        self.train_step = train.MomentumOptimizer(learning_rate=learning_rate,
                                                  momentum=0.9,
                                                  use_locking=False,
                                                  use_nesterov=True).minimize(
                                                      self.loss)  #动量优化器
        self.session.run(global_variables_initializer())

        next_done = 0
        starttime = datetime.now()
        for i in range(limit):
            self.session.run(self.train_step,
                             feed_dict={
                                 self.input_layer: cases,
                                 self.label_layer: labels,
                                 learning_rate: learn_rate
                             })

            if i % 2 == 0:
                if not GlobalMap().get('running_global'):
                    break
                next_done = 1
                next_times = i + 1
                train_0 = self.train_step
                loss0 = self.session.run(self.loss,
                                         feed_dict={
                                             self.input_layer: cases,
                                             self.label_layer: labels
                                         })

            #更新前台和处理数据
            if next_done == 1 and i % next_times == 0:
                loss1 = self.session.run(self.loss,
                                         feed_dict={
                                             self.input_layer: cases,
                                             self.label_layer: labels
                                         })
                GlobalMap().set(loss_now=loss0,
                                times=i,
                                used_time=(datetime.now() - starttime).seconds)
                if loss1 < self.init_temp['precision']:
                    break

                if (i + 1) % 50 == 0 and self.init_temp['fix_auto'] and (
                        loss0 - loss1 < 0.1 or isnan(loss1)):
                    self.auto_times += 1
                    #print(self.auto_times)
                    GlobalMap().set(progress_num=5 + i * 100 // limit +
                                    10)  #进度条
                    if self.auto_times > 8:
                        break

                if loss1 < loss0:  #在动量的基础上调整学习率
                    learn_rate *= 1.0 + self.init_temp['dg_adaptive']
                else:
                    learn_rate *= 1.0 - self.init_temp['dg_adaptive']
                    self.train_step = train_0
                    #print("1:", loss1)
                #print("shu:",learn_rate)
                next_done = 0
        self.saver.Saver().save(self.session, self.ckpt_path)
Ejemplo n.º 18
0
 def pause(self):
     GlobalMap().set(running_global=0, )
Ejemplo n.º 19
0
 def accept(self):
     self.mun = self.dialog_setting.spinBox.value()
     self.cum[0]=append(self.cum[0], uniform(self.x_n0,self.x_n1,size=(1,self.mun)))
     self.cum[1]=append(self.cum[1], uniform(self.y_n0,self.y_n1,size=(1,self.mun)))
     self.accept_move += [[self.x0, self.y0, self.x1-self.x0, self.y1-self.y0, self.mun]]
     GlobalMap().set(userdefined = self.cum, )
Ejemplo n.º 20
0
 def pause(self):
     self.timer.stop()
     GlobalMap().set(running_global=0)
Ejemplo n.º 21
0
    def compute_initial_figure(self):
        if self.times <= 23:
            temp11 = self.temp1[self.temp1['time'] == self.lists[self.times -
                                                                 1]]
            temp12 = self.temp1[self.temp1['time'] == self.lists[self.times]]
            temp1112 = merge(temp11, temp12, how='outer', on='id')
            temp1112 = temp1112[[
                'x_x', 'y_x', 'x_y', 'y_y'
            ]][temp1112['x_x'] != temp1112['x_y']]  #np.isnan(temp1112['y_y'])]
            temp1112 = temp1112[[
                'x_x', 'y_x', 'x_y', 'y_y'
            ]][np.square(temp1112['x_x'] - temp1112['x_y']) +
               np.square(temp1112['y_x'] - temp1112['y_y']) >
               np.square(0.0001)]  #车至少移动了直线距离100
            temp1112 = temp1112[['x_x', 'y_x', 'x_y',
                                 'y_y']][np.isfinite(temp1112['x_x'])]

            temp11120 = merge(temp11, temp12, how='outer', on='id')
            temp11120 = temp11120[[
                'x_x', 'y_x', 'x_y', 'y_y'
            ]][np.square(temp11120['x_x'] - temp11120['x_y']) +
               np.square(temp1112['y_x'] - temp11120['y_y']) >
               np.square(0.001)]  #车至少移动了直线距离1km
            temp11120 = temp11120[['x_x',
                                   'y_x']][np.isfinite(temp11120['x_x'])]

            self.changenum00 += [temp1112.shape[0]]
            self.changenum01 += [temp11120.shape[0]]
            imgP = imread('core/map.png', )
            self.axes.imshow(imgP,
                             extent=[112.1495, 112.288, 30.308, 30.391],
                             aspect='auto')
            x = temp1112['x_x']
            y = temp1112['y_x']
            np.save(
                GlobalMap().get('temp_path') + '/change' + str(self.times) +
                '.npy', np.vstack((x, y)))
            self.axes.hold(True)
            self.axes.scatter(x, y, marker='o', c='', edgecolors='g')
            self.axes.grid(True)
            self.axes.set_xlim(112.150, 112.284)
            self.axes.set_ylim(30.309, 30.385)
            self.axes.set(xlabel="longitude", ylabel="latitude")
            self.axes.set_title('The ' + str(self.times) +
                                ':00 ’s distribution statistics')
            self.draw()
            self.axes.hold(False)
        if self.times >= 23:
            if self.times == 23:
                self.axes.bar(range(1, 24),
                              self.changenum00,
                              0.8,
                              color=['g', 'c'],
                              linewidth=0.1,
                              yerr=[
                                  0.8,
                              ] * 23,
                              error_kw=dict(elinewidth=1.5, ecolor='green'))
                self.axes.hold(True)
                self.axes.plot(range(1, 24),
                               self.changenum00,
                               marker="o",
                               linestyle="-",
                               color="r")
                self.axes.set_xticks(range(1, 24))
                self.axes.set(xlabel="hour", ylabel="number")
                for x, y in zip(range(1, 24), self.changenum00):
                    self.axes.text(x, y + 0.5, '%d' % y, ha='center')
                    self.axes.set_title(
                        'Number of changes at each time point(At least 100m)')
                self.draw()
                self.axes.hold(False)
            else:
                self.pause()
                sleep(1)
                self.axes.bar(range(1, 24),
                              self.changenum01,
                              0.8,
                              color=['g', 'c'],
                              linewidth=0.1,
                              yerr=[
                                  0.8,
                              ] * 23,
                              error_kw=dict(elinewidth=1.5, ecolor='green'))
                self.axes.hold(True)
                self.axes.plot(range(1, 24),
                               self.changenum01,
                               marker="o",
                               linestyle="-",
                               color="r")
                self.axes.set_xticks(range(1, 24))
                self.axes.set(xlabel="hour", ylabel="number")
                for x, y in zip(range(1, 24), self.changenum01):
                    self.axes.text(x, y + 0.5, '%d' % y, ha='center')
                    self.axes.set_title(
                        'Number of changes at each time point(At least 1km)')
                self.draw()
                self.axes.hold(False)
        self.times += 1