Ejemplo n.º 1
0
 def __init__(self, cfg, environment, sess, model_dir):
     super(Player, self).__init__(cfg)
     self.sess = sess
     self.inputs = tf.placeholder('float32', [
                                  None, self.cfg.screen_height, self.cfg.screen_width, self.cfg.history_length], name='inputs')
     self.target_inputs = tf.placeholder('float32', [
                                         None, self.cfg.screen_height, self.cfg.screen_width, self.cfg.history_length], name='target_inputs')
     self.target_q_t = tf.placeholder('float32', [None], name='target_q_t')
     self.action = tf.placeholder('int64', [None], name='action')
     self.env = environment
     self.history = History(self.cfg)
     self.model_dir = model_dir
     self.memory = ExperienceBuffer(cfg, self.model_dir)
     self.learning_rate_minimum = 0.0001
     self.double_q = True
Ejemplo n.º 2
0
    def __init__(self, cfg, environment, sess, model_dir, state='image', state_dim=3, log_file_pathname='/tmp/deeprl.log', verbosity=1, lr_policy=PolyDecayPolicy(0.001), start_epoch=1, resume_lr=0.001, n_iters_per_epoch=100, gpu_memory_fraction=0.9):
        self.cfg = cfg
        self.sess = sess
        self.weight_dir = 'weights'
        self.env = environment
        self.history = History(
            self.cfg, log=log, state=state, state_dim=state_dim)
        self.model_dir = model_dir
        self.memory = ExperienceBuffer(
            self.cfg, self.model_dir, log=log, state=state, state_dim=state_dim)
        self.learning_rate_minimum = 0.0001
        self.learning_rate = tf.placeholder(
            tf.float32, shape=[], name="learning_rate_placeholder")
        self.lr_policy = lr_policy
        self.lr_policy.start_epoch = start_epoch
        self.lr_policy.base_lr = resume_lr
        self.lr_policy.n_iters_per_epoch = n_iters_per_epoch
        self.gpu_memory_fraction = gpu_memory_fraction
        log.setFileHandler(log_file_pathname)
        log.setVerbosity(str(verbosity))

        with tf.variable_scope('step'):
            self.step_op = tf.Variable(0, trainable=False, name='step')
            self.step_input = tf.placeholder('int32', None, name='step_input')
            self.step_assign_op = self.step_op.assign(self.step_input)
Ejemplo n.º 3
0
def map_index():
    city_name = g.city_name

    today = time.strftime("%Y-%m-%d", time.localtime())
    date_end = request.args.get('date_end', default=today)
    hd_type = request.args.get('type', default='aqi')

    condition = {
        'date': date_end,
    }
    hd_types = ['aqi', 'quality', 'pm25', 'pm10', 'so2', 'co', 'no2', 'o3']
    if hd_type not in hd_types:
        hd_type = 'aqi'

    field = 'hd_' + hd_type
    history_client = History.factory()
    city_all = history_client.all_city(condition)

    data = dict()
    data['current_page'] = 'map'
    data['city_name'] = city_name
    data['city_all'] = city_all
    data['req_args'] = dict(request.args.items())
    data['date_end'] = date_end
    data['type'] = hd_type
    data['field'] = field

    return render_template('map/index.html', **data)
Ejemplo n.º 4
0
def report_aqi_trend():
    city_name = g.city_name

    today = time.strftime("%Y-%m-%d", time.localtime())
    day7_dt = datetime.datetime.now() - datetime.timedelta(days=7)
    day7 = day7_dt.strftime("%Y-%m-%d")

    date_start = request.args.get('date_start', default=day7)
    date_end = request.args.get('date_end', default=today)

    condition = {
        'city_name': city_name,
        'date_start': date_start,
        'date_end': date_end
    }
    history_client = History.factory()
    history_all = history_client.all_day(condition)
    history_types = [u'优', u'良', u'轻度污染', u'中度污染', u'重度污染', u'严重污染']
    for history in history_all:
        history['hd_quality_index'] = history_types.index(
            history['hd_quality'])

    data = dict()
    data['current_page'] = 'report'
    data['req_args'] = dict(request.args.items())
    data['history_all'] = history_all
    data['city_name'] = city_name
    data['date_start'] = date_start
    data['date_end'] = date_end

    return render_template('report/aqi_trend.html', **data)
Ejemplo n.º 5
0
def report_aqi_total():
    city_name = g.city_name

    today = time.strftime("%Y-%m-%d", time.localtime())
    day7_dt = datetime.datetime.now() - datetime.timedelta(days=7)
    day7 = day7_dt.strftime("%Y-%m-%d")

    date_start = request.args.get('date_start', default=day7)
    date_end = request.args.get('date_end', default=today)

    condition = {
        'city_name': city_name,
        'date_start': date_start,
        'date_end': date_end
    }
    history_client = History.factory()
    hd_quality = history_client.total_history(condition, 'hd_quality')

    data = dict()
    data['current_page'] = 'report'
    data['req_args'] = dict(request.args.items())
    data['hd_quality'] = hd_quality
    data['city_name'] = city_name
    data['date_start'] = date_start
    data['date_end'] = date_end

    return render_template('report/aqi_total.html', **data)
Ejemplo n.º 6
0
def data_history():
    city_name = g.city_name

    history_client = History.factory()
    history_city = history_client.get_city_by_name(city_name)
    if not history_city:
        return u'暂时不支持此城市的天气数据查询'

    weather_client = Weather.factory()
    weather_city = weather_client.get_city_by_name(city_name)

    today = time.strftime("%Y-%m-%d", time.localtime())
    day7_dt = datetime.datetime.now() - datetime.timedelta(days=7)
    day7 = day7_dt.strftime("%Y-%m-%d")

    page = request.args.get('page', 1, type=int)
    date_start = request.args.get('date_start', default=day7)
    date_end = request.args.get('date_end', default=today)

    condition = {
        'city_name': city_name,
        'date_start': date_start,
        'date_end': date_end
    }
    history_client = History.factory()
    info = history_client.search_day(condition, page, 31)
    # print json.dumps(dict(info), indent=7, ensure_ascii=False)
    # print str(info)

    info['pages'] = min(7, info['pages'])

    data = dict()
    data['current_page'] = 'data'
    data['date_start'] = date_start
    data['date_end'] = date_end
    data['history_city'] = history_city
    data['weather_city'] = weather_city
    data['req_args'] = dict(request.args.items())
    data['info'] = info
    data['page'] = page

    return render_template('data/history.html', **data)
Ejemplo n.º 7
0
def data_index():
    city_name = g.city_name

    history_client = History.factory()
    history_city = history_client.get_city_by_name(city_name)

    weather_client = Weather.factory()
    weather_city = weather_client.get_city_by_name(city_name)

    crawl_client = Crawl.factory()

    if request.method == 'POST':
        job_id = request.form.get('job_id', default=0)
        if not job_id:
            return json.dumps({'status': False, 'message': u'没有任务id!'})

        job_info = crawl_client.get_job_info_by_id(job_id)
        if not job_info:
            return json.dumps({'status': False, 'message': u'没有任务信息!'})
        if 'city_name' not in job_info or job_info['city_name'] != city_name:
            return json.dumps({'status': False, 'message': u'此城市没有任务信息!'})

        # scrapy crawl aqistudy -a city_name=上海 -a month=2017-01
        sp = Spider.factory()
        m = job_info['job_month']
        if int(m) < 10:
            m = '0' + str(m)
        month = str(job_info['job_year']) + '-' + str(m)

        result = sp.schedule_job(spider=job_info['job_spider'],
                                 setting=[],
                                 jobid=job_id,
                                 city_name=city_name,
                                 month=month)
        if not result:
            return json.dumps({'status': False, 'message': u'启动任务失败!'})
        return json.dumps({'status': True, 'message': u'启动任务成功!'})

    current = datetime.datetime.now()
    job_list = crawl_client.get_job_list(city_name, current.year,
                                         current.month)
    # print job_list

    data = dict()
    data['current_page'] = 'data'
    data['history_city'] = history_city
    data['weather_city'] = weather_city
    data['req_args'] = dict(request.args.items())
    data['job_list'] = job_list

    return render_template('data/index.html', **data)
Ejemplo n.º 8
0
def learn_index():
    city_name = g.city_name

    today = time.strftime("%Y-%m-%d", time.localtime())
    day7_dt = datetime.datetime.now() - datetime.timedelta(days=7)
    day7 = day7_dt.strftime("%Y-%m-%d")

    date_start = request.args.get('date_start', default=day7)
    date_end = request.args.get('date_end', default=today)
    history = request.args.get('history', default=1, type=int)
    weather = request.args.get('weather', default=1, type=int)

    condition = {
        'city_name': city_name,
        'date_start': date_start,
        'date_end': date_end
    }

    history_client = History.factory()
    weather_client = Weather.factory()
    history_count = 0
    weather_count = 0
    if history == 1:
        history_count = history_client.count_history(condition)
    if weather == 1:
        weather_count = weather_client.count_weather(condition)

    data = dict()
    data['current_page'] = 'learn'
    data['req_args'] = dict(request.args.items())
    data['city_name'] = city_name
    data['date_start'] = date_start
    data['date_end'] = date_end
    data['history'] = history
    data['weather'] = weather
    data['history_count'] = history_count
    data['weather_count'] = weather_count

    return render_template('learn/index.html', **data)
Ejemplo n.º 9
0
class Player(Base):

    def __init__(self, cfg, environment, sess, model_dir):
        super(Player, self).__init__(cfg)
        self.sess = sess
        self.inputs = tf.placeholder('float32', [
                                     None, self.cfg.screen_height, self.cfg.screen_width, self.cfg.history_length], name='inputs')
        self.target_inputs = tf.placeholder('float32', [
                                            None, self.cfg.screen_height, self.cfg.screen_width, self.cfg.history_length], name='target_inputs')
        self.target_q_t = tf.placeholder('float32', [None], name='target_q_t')
        self.action = tf.placeholder('int64', [None], name='action')
        self.env = environment
        self.history = History(self.cfg)
        self.model_dir = model_dir
        self.memory = ExperienceBuffer(cfg, self.model_dir)
        self.learning_rate_minimum = 0.0001
        self.double_q = True

    def play(self, load_model=True, test_ep=None, num_step=100000, num_episodes=200, display=True):
        model_q = Model()
        model_target_q = Model(is_target_q=True)
        end_points_q = model_q.model_def(self.inputs, self.env, name='main_q')
        _ = model_target_q.model_def(
            self.target_inputs, self.env, name='target_q')

        init = tf.global_variables_initializer()
        self.saver = tf.train.Saver(max_to_keep=None)

        if load_model:
            utils.load_model(self.saver, self.sess, self.model_dir)
        else:
            self.sess.run(init)

        if test_ep is None:
            test_ep = self.cfg.ep_test

        if not display:
            gym_dir = '/tmp/%s-%s' % (self.cfg.env_name, utils.get_time())
            self.env.env.monitor.start(gym_dir)

        best_reward, best_episode = 0, 0
        for episode in xrange(num_episodes):
            screen, reward, action, terminal = self.env.new_random_game()
            current_reward = 0

            for _ in xrange(self.cfg.history_length):
                self.history.add(screen)

            for t in tqdm(xrange(num_step), ncols=70):
                # 1. predict
                action = self.predict(
                    end_points_q['pred_action'], self.history.get(), ep=test_ep)
                # 2. act
                screen, reward, terminal = self.env.act(
                    action, is_training=False)
                # 3. observe
                self.history.add(screen)

                current_reward += reward
                if terminal:
                    break

            if current_reward > best_reward:
                best_reward = current_reward
                best_episode = episode

            print " [%d] Best reward : %d" % (best_episode, best_reward)

        if not display:
            self.env.env.monitor.close()
Ejemplo n.º 10
0
def main():
    # Init Colorama
    init(strip=not sys.stdout.isatty())

    # Constants
    root_dir = os.path.dirname(os.path.abspath(__file__))
    title = "Chika's Script\nv0.1"

    # Set routines
    add_anime = AddAnime()
    download = Download()
    history = History()

    # Grab ASCII Art to display
    chika = MenuArt().chika

    # Get username
    try:
        with open(os.path.join(root_dir, 'data\\settings.json'),
                  'r',
                  encoding='utf-8') as settings:
            data = json.load(settings)
            username = '******' + data["username"] if data["username"] != '' else ''

    except Exception as e:
        username = ''
        print("Error parsing JSON settings file: ", e)

    exit_script = False
    while not exit_script:

        # Clear the screen
        sp.call('cls', shell=True)

        # Show main menu
        print(title)
        print(colored(chika, "cyan"))
        print('\t\t\t\tOptions:', end="")
        print(colored(' 1) Download ', 'magenta'), end="")
        print('⡇', end="")
        print(colored(' 2) Add new anime ', 'green'), end="")
        print('⡇', end="")
        print(colored(' 3) History ', 'yellow'), end="")
        print('⡇', end="")
        print(colored(' 0) Exit ', 'red'))

        # Run routines
        try:
            opt = int(input(f'Welcome{username}!\nPlease, select an option: '))

            if opt == 1:
                download.start()
                download.join()
            elif opt == 2:
                add_anime.start(root_dir)
            elif opt == 3:
                history.display_history(root_dir)
            elif opt == 0:
                print('See ya ;)')
                exit_script = True
            else:
                print('This is not a valid option!')

        except Exception as e:
            print('Error: ', e)
Ejemplo n.º 11
0
    def run(self):
        # User input
        to_download = input("Anime/episode -> ")

        # User input properly divided
        # TODO this in a function with option to multiple episodes and animes
        anime = to_download.split()[0]
        episode = to_download.split()[1]

        # Setting the file name
        self.file_name = anime + '_ep' + episode + '.mp4'

        # Starting loading thread
        loading_thread = Loading()
        loading_thread.start()

        try:
            # GET request
            self.driver.get(self.set_url_episode(anime, episode))

            # Finding and switching context to the iframe holding the video
            frame = self.driver.find_element_by_css_selector(
                'div.pframe iframe')
            self.driver.switch_to.frame(frame)

            # Getting video URL
            video = self.driver.find_element_by_tag_name(
                'video').get_attribute('src')

            # Close selenium
            self.driver.close()

            # Finish loading thread
            LoaderCondition.loaded = True

            # Set complete path of file
            complete_path = os.path.join(self.path_to_save, self.file_name)

            # Setting youtube-dl options
            ydl_opts = {
                'outtmpl': complete_path,
                'quiet': True,
                'logger': MyLogger(),
                'progress_hooks': [DownloadInfo.download_progress_bar]
            }

            # Get start time
            start = time()
            today = datetime.now()
            hour = str(today.hour)
            minute = str(today.minute) if len(str(
                today.minute)) > 1 else '0' + str(today.minute)

            # Performing the download
            with youtube_dl.YoutubeDL(ydl_opts) as ydl:
                # TODO the possibility to download more than one episode
                print(
                    f'Downloading {anime} episode {episode} to {self.path_to_save}'
                )
                ydl.download([video])

                # Prepare to add to history
                end = time()
                total_time = DownloadInfo.calc_time(start, end)
                size = str(int(os.path.getsize(complete_path) / 1000000))

                new_item = {
                    DownloadInfo.current_day(): {
                        "anime": anime,
                        "episode": episode,
                        "start-hour": f"{hour}:{minute}",
                        "file-size": f"~{size}Mb",
                        "took:": total_time
                    }
                }

                # Add the current download to history
                History.add_to_history(new_item, self.root_dir)
            return

        except Exception as e:
            print('\nError: ', e)
Ejemplo n.º 12
0
def main():
    setup_path()

    # Parse command line arguments
    args_parser = argparse.ArgumentParser()
    args_parser.add_argument(
        "--debug",
        help="Increase output verbosity",
        action="store_true")
    args_parser.add_argument("--tweak",
                             help="Set time and date to tweaked value")
    args_parser.add_argument("--chords",
                             help="Directory to look for scripts in")
    args_parser.add_argument( "--history",
                            help="List previous chord executions" )
    args = args_parser.parse_args()

    # Set up logging
    import core.log as log
    logging = log.getLogger(args.debug)
    logging.debug('Using Python %s', platform.python_version())

    # Load configuration
    from core.config import config as conf

    # Set up database
    db = setup_db()

    # Where are the chords kept?
    if args.chords:
        if os.path.isdir(args.chords):
            chordsDirectory = args.chords
    else:
        try:
            chordsDirectoryFromConf = conf.get('ocarina', 'chords')
            if os.path.isdir(chordsDirectoryFromConf):
                chordsDirectory = chordsDirectoryFromConf
        except:
            chordsDirectory = os.path.abspath(
                os.path.join(currentDirectory, '../chords'))
    sys.path.insert(0, chordsDirectory)

    # Where are the virtual environments kept?
    try:
        virtualEnvDirectoryFromConf = conf.get('ocarina', 'virtualenv')
        if os.path.isdir(virtualEnvDirectoryFromConf):
            virtualEnvDirectory = virtualEnvDirectoryFromConf
    except:
        virtualEnvDirectory = os.path.abspath(
            os.path.join(currentDirectory, '../.virtualenv'))

    shouldRunChords = not args.history

    if shouldRunChords:
        import core.chords as chords
        from core.now import Now
        now = Now(args.tweak)
        chords.run(chordsDirectory, virtualEnvDirectory, now, logging)

    if args.history:
        from core.history import History

        history = History( db )
        history.listPrevious( args.history )
Ejemplo n.º 13
0
def learn_step2():
    city_name = g.city_name

    today = time.strftime("%Y-%m-%d", time.localtime())
    day7_dt = datetime.datetime.now() - datetime.timedelta(days=7)
    day7 = day7_dt.strftime("%Y-%m-%d")

    date_start = request.args.get('date_start', default=day7)
    date_end = request.args.get('date_end', default=today)
    history = request.args.get('history', default=1, type=int)
    weather = request.args.get('weather', default=1, type=int)
    day_num = request.args.get('day_num', default=1, type=int)

    condition = {
        'city_name': city_name,
        'date_start': date_start,
        'date_end': date_end
    }

    history_client = History.factory()
    weather_client = Weather.factory()
    history_count = 0
    weather_count = 0
    if history == 1:
        history_count = history_client.count_history(condition)
    if weather == 1:
        weather_count = weather_client.count_weather(condition)

    if request.method == 'POST':
        histories = request.form.getlist('histories[]')
        weathers = request.form.getlist('weathers[]')
        # print histories, weathers
        if not histories and not weathers:
            return json.dumps({'status': False, 'message': u'请您勾选特征数据类型!'})

        if history_count < 1 and weather_count < 1:
            return json.dumps({
                'status': False,
                'message': u'选定的日期内没有数据,请返回上一步重新选择!'
            })
        if (history_count + weather_count) < 7:
            return json.dumps({
                'status': False,
                'message': u'数据至少应该有7条(天)以上才能进行机器学习!'
            })

        learn_client = Learn.factory()
        job_id = learn_client.create_job({
            'learn_status': Learn.JOB_READY,
            'city_name': city_name,
            'date_start': date_start,
            'date_end': date_end,
            'history': history,
            'weather': weather,
            'histories': json.dumps(histories),
            'weathers': json.dumps(weathers),
            'target': 'PM25',
            'day_num': day_num
        })
        if not job_id:
            return json.dumps({'status': False, 'message': u'建立机器学习任务失败!'})

        return json.dumps({'status': True, 'message': job_id})

    data = dict()
    data['current_page'] = 'learn'
    data['req_args'] = dict(request.args.items())
    data['city_name'] = city_name
    data['date_start'] = date_start
    data['date_end'] = date_end
    data['history'] = history
    data['weather'] = weather
    data['history_count'] = history_count
    data['weather_count'] = weather_count

    return render_template('learn/step2.html', **data)