Ejemplo n.º 1
0
class Off_Policy_Algo(object):
    """Classes implementing TD3 and DDPG off-policy learners

         Parameters:
               args (object): Parameter class


     """
    def __init__(self,
                 wwid,
                 algo_name,
                 state_dim,
                 action_dim,
                 actor_lr,
                 critic_lr,
                 gamma,
                 tau,
                 init_w=True):

        self.algo_name = algo_name
        self.gamma = gamma
        self.tau = tau

        self.HLoss = HLoss()
        #Initialize actors
        self.actor = Actor(state_dim, action_dim, wwid, self.algo_name)
        if init_w: self.actor.apply(utils.init_weights)
        self.actor_target = Actor(state_dim, action_dim, wwid, self.algo_name)
        utils.hard_update(self.actor_target, self.actor)
        self.actor_optim = Adam(self.actor.parameters(), actor_lr)

        self.critic = Critic(state_dim, action_dim)
        if init_w: self.critic.apply(utils.init_weights)
        self.critic_target = Critic(state_dim, action_dim)
        utils.hard_update(self.critic_target, self.critic)
        self.critic_optim = Adam(self.critic.parameters(), critic_lr)

        self.loss = nn.MSELoss()

        if torch.cuda.is_available():
            self.actor_target.cuda()
            self.critic_target.cuda()
            self.actor.cuda()
            self.critic.cuda()
        self.num_critic_updates = 0

        #Statistics Tracker
        self.action_loss = {'min': [], 'max': [], 'mean': [], 'std': []}
        self.policy_loss = {'min': [], 'max': [], 'mean': [], 'std': []}
        self.critic_loss = {'mean': []}
        self.q = {'min': [], 'max': [], 'mean': [], 'std': []}
        self.val = {'min': [], 'max': [], 'mean': [], 'std': []}

    def save_net(self, path):
        torch.save(self.actor.state_dict(), path)

    def act(self, state):
        return self.actor(state)

    def share_memory(self):
        self.actor.share_memory()
        self.actor_target.share_memory()
        self.critic.share_memory()
        self.critic_target.share_memory()

    def compute_stats(self, tensor, tracker):
        """Computes stats from intermediate tensors

             Parameters:
                   tensor (tensor): tensor
                   tracker (object): logger

             Returns:
                   None


         """
        tracker['min'].append(torch.min(tensor).item())
        tracker['max'].append(torch.max(tensor).item())
        tracker['mean'].append(torch.mean(tensor).item())
        tracker['mean'].append(torch.mean(tensor).item())

    def update_parameters(self,
                          state_batch,
                          next_state_batch,
                          action_batch,
                          reward_batch,
                          done_batch,
                          num_epoch=1,
                          **kwargs):
        """Runs a step of Bellman upodate and policy gradient using a batch of experiences

             Parameters:
                  state_batch (tensor): Current States
                  next_state_batch (tensor): Next States
                  action_batch (tensor): Actions
                  reward_batch (tensor): Rewards
                  done_batch (tensor): Done batch
                  num_epoch (int): Number of learning iteration to run with the same data

             Returns:
                   None

         """

        if isinstance(state_batch, list):
            state_batch = torch.cat(state_batch)
            next_state_batch = torch.cat(next_state_batch)
            action_batch = torch.cat(action_batch)
            reward_batch = torch.cat(reward_batch).done_batch = torch.cat(
                done_batch)

        for _ in range(num_epoch):
            ########### CRITIC UPDATE ####################

            #Compute next q-val, next_v and target
            with torch.no_grad():
                #Policy Noise
                policy_noise = np.random.normal(
                    0, kwargs['policy_noise'],
                    (action_batch.size()[0], action_batch.size()[1]))
                policy_noise = torch.clamp(torch.Tensor(policy_noise),
                                           -kwargs['policy_noise_clip'],
                                           kwargs['policy_noise_clip'])

                #Compute next action_bacth
                #next_action_batch = self.actor_target.turn_max_into_onehot(self.actor_target.Gumbel_softmax_sample_distribution(next_state_batch, use_cuda=True))\
                #        if self.algo_name == 'dis' else self.actor_target.forward(next_state_batch) + policy_noise.cuda()  #this should use one-hot from logits
                next_action_batch = self.actor_target.turn_max_into_onehot(self.actor_target.forward(next_state_batch)) \
                    if self.algo_name == 'dis' else self.actor_target.forward(next_state_batch) + policy_noise.cuda()  # this should use one-hot from logits
                if random.random() < 0.0001:
                    print('off_policy line 114, changed next action batch')
                next_action_batch = torch.clamp(next_action_batch, 0, 1)

                #Compute Q-val and value of next state masking by done
                q1, q2, _ = self.critic_target.forward(next_state_batch,
                                                       next_action_batch)
                q1 = (1 - done_batch) * q1
                q2 = (1 - done_batch) * q2

                #Select which q to use as next-q (depends on algo)
                if self.algo_name == 'TD3' or self.algo_name == 'TD3_actor_min' or self.algo_name == 'dis':
                    next_q = torch.min(q1, q2)
                elif self.algo_name == 'DDPG':
                    next_q = q1
                elif self.algo_name == 'TD3_max':
                    next_q = torch.max(q1, q2)

                #Compute target q and target val
                target_q = reward_batch + (self.gamma * next_q)

            self.critic_optim.zero_grad()
            current_q1, current_q2, current_val = self.critic.forward(
                (state_batch),
                (action_batch
                 ))  #here the action batch should be the soft version
            self.compute_stats(current_q1, self.q)

            dt = self.loss(current_q1, target_q)

            if self.algo_name == 'TD3' or self.algo_name == 'TD3_max' or self.algo_name == 'dis':
                dt = dt + self.loss(current_q2, target_q)
            self.critic_loss['mean'].append(dt.item())
            #print(dt.item(), "off_policy_algo line 136")

            dt.backward()

            self.critic_optim.step()
            self.num_critic_updates += 1

            #Delayed Actor Update
            if self.num_critic_updates % kwargs['policy_ups_freq'] == 0:

                actor_actions = self.actor.Gumbel_softmax_sample_distribution(state_batch, use_cuda=True)\
                    if self.algo_name == 'dis' else self.actor.forward(state_batch)
                #actor_actions = self.actor.forward(state_batch)
                #if random.random() < 0.001: print('actor action changed')
                Q1, Q2, val = self.critic.forward(state_batch, actor_actions)

                # if self.args.use_advantage: policy_loss = -(Q1 - val)
                policy_loss = -Q1 + 0.1 * self.HLoss(
                    actor_actions
                )  # HLoss is a single scalar, directly regularized logits?

                if random.random() < 0.0005:
                    print('added entropy regularization, off_policy_algo 161')

                self.compute_stats(policy_loss, self.policy_loss)
                policy_loss = policy_loss.mean()

                #print(policy_loss, 'off_policy line 157')
                self.actor_optim.zero_grad()

                policy_loss.backward(retain_graph=True)
                self.actor_optim.step()

                #if random.random() <= 0.001:
                #    self.test_actor_gradient_descent(state_batch)

            if self.num_critic_updates % kwargs['policy_ups_freq'] == 0:
                utils.soft_update(self.actor_target, self.actor, self.tau)
            utils.soft_update(self.critic_target, self.critic, self.tau)

    def test_actor_gradient_descent(self, state_batch):
        #this method test if running gradient descent on the actor actually decrease the loss
        print("test_actor_gradient_descent, off_policy_algo line 179")
        for i in range(10):
            actor_actions = self.actor.forward(state_batch)
            print("logits_",
                  self.actor.w_out(self.actor.logits(state_batch))[0])
            print("action_batch", actor_actions[0])
            Q1, Q2, val = self.critic.forward(state_batch, actor_actions)
            policy_loss = -Q1
            policy_loss = policy_loss.mean()
            print("policy_loss at i = ", i, " is ", policy_loss)
            self.actor_optim.zero_grad()
            policy_loss.backward(retain_graph=True)
            print("gradient_", self.actor.f1.bias.grad[0])
            self.actor_optim.step()
            print("bias_", self.actor.f1.bias[0])
Ejemplo n.º 2
0
class Off_Policy_Algo(object):
    """Classes implementing TD3 and DDPG off-policy learners

         Parameters:
               args (object): Parameter class


     """
    def __init__(self, wwid, algo_name, state_dim, action_dim, actor_lr, critic_lr, gamma, tau, init_w = True):

        self.algo_name = algo_name; self.gamma = gamma; self.tau = tau

        #Initialize actors
        self.actor = Actor(state_dim, action_dim, wwid)
        if init_w: self.actor.apply(utils.init_weights)
        self.actor_target = Actor(state_dim, action_dim, wwid)
        utils.hard_update(self.actor_target, self.actor)
        self.actor_optim = Adam(self.actor.parameters(), actor_lr)


        self.critic = Critic(state_dim, action_dim)
        if init_w: self.critic.apply(utils.init_weights)
        self.critic_target = Critic(state_dim, action_dim)
        utils.hard_update(self.critic_target, self.critic)
        self.critic_optim = Adam(self.critic.parameters(), critic_lr)

        self.loss = nn.MSELoss()

        self.actor_target.cuda(); self.critic_target.cuda(); self.actor.cuda(); self.critic.cuda()
        self.num_critic_updates = 0

        #Statistics Tracker
        self.action_loss = {'min':[], 'max': [], 'mean':[], 'std':[]}
        self.policy_loss = {'min':[], 'max': [], 'mean':[], 'std':[]}
        self.critic_loss = {'mean':[]}
        self.q = {'min':[], 'max': [], 'mean':[], 'std':[]}
        self.val = {'min':[], 'max': [], 'mean':[], 'std':[]}

    def compute_stats(self, tensor, tracker):
        """Computes stats from intermediate tensors

             Parameters:
                   tensor (tensor): tensor
                   tracker (object): logger

             Returns:
                   None


         """
        tracker['min'].append(torch.min(tensor).item())
        tracker['max'].append(torch.max(tensor).item())
        tracker['mean'].append(torch.mean(tensor).item())
        tracker['mean'].append(torch.mean(tensor).item())

    def update_parameters(self, state_batch, next_state_batch, action_batch, reward_batch, done_batch, num_epoch=1, **kwargs):
        """Runs a step of Bellman upodate and policy gradient using a batch of experiences

             Parameters:
                  state_batch (tensor): Current States
                  next_state_batch (tensor): Next States
                  action_batch (tensor): Actions
                  reward_batch (tensor): Rewards
                  done_batch (tensor): Done batch
                  num_epoch (int): Number of learning iteration to run with the same data

             Returns:
                   None

         """

        if isinstance(state_batch, list): state_batch = torch.cat(state_batch); next_state_batch = torch.cat(next_state_batch); action_batch = torch.cat(action_batch); reward_batch = torch.cat(reward_batch). done_batch = torch.cat(done_batch)

        for _ in range(num_epoch):
            ########### CRITIC UPDATE ####################

            #Compute next q-val, next_v and target
            with torch.no_grad():
                #Policy Noise
                policy_noise = np.random.normal(0, kwargs['policy_noise'], (action_batch.size()[0], action_batch.size()[1]))
                policy_noise = torch.clamp(torch.Tensor(policy_noise), -kwargs['policy_noise_clip'], kwargs['policy_noise_clip'])

                #Compute next action_bacth
                next_action_batch = self.actor_target.forward(next_state_batch) + policy_noise.cuda()
                next_action_batch = torch.clamp(next_action_batch, 0,1)

                #Compute Q-val and value of next state masking by done
                q1, q2, _ = self.critic_target.forward(next_state_batch, next_action_batch)
                q1 = (1 - done_batch) * q1
                q2 = (1 - done_batch) * q2

                #Select which q to use as next-q (depends on algo)
                if self.algo_name == 'TD3' or self.algo_name == 'TD3_actor_min': next_q = torch.min(q1, q2)
                elif self.algo_name == 'DDPG': next_q = q1
                elif self.algo_name == 'TD3_max': next_q = torch.max(q1, q2)

                #Compute target q and target val
                target_q = reward_batch + (self.gamma * next_q)


            self.critic_optim.zero_grad()
            current_q1, current_q2, current_val = self.critic.forward((state_batch), (action_batch))
            self.compute_stats(current_q1, self.q)

            dt = self.loss(current_q1, target_q)

            if self.algo_name == 'TD3' or self.algo_name == 'TD3_max': dt = dt + self.loss(current_q2, target_q)
            self.critic_loss['mean'].append(dt.item())

            dt.backward()

            self.critic_optim.step()
            self.num_critic_updates += 1


            #Delayed Actor Update
            if self.num_critic_updates % kwargs['policy_ups_freq'] == 0:

                actor_actions = self.actor.forward(state_batch)
                Q1, Q2, val = self.critic.forward(state_batch, actor_actions)

                # if self.args.use_advantage: policy_loss = -(Q1 - val)
                policy_loss = -Q1

                self.compute_stats(policy_loss,self.policy_loss)
                policy_loss = policy_loss.mean()


                self.actor_optim.zero_grad()



                policy_loss.backward(retain_graph=True)
                self.actor_optim.step()


            if self.num_critic_updates % kwargs['policy_ups_freq'] == 0: utils.soft_update(self.actor_target, self.actor, self.tau)
            utils.soft_update(self.critic_target, self.critic, self.tau)