Ejemplo n.º 1
0
def train_rcnn(cfg,
               dataset,
               image_set,
               root_path,
               dataset_path,
               frequent,
               kvstore,
               flip,
               shuffle,
               resume,
               ctx,
               pretrained,
               epoch,
               prefix,
               begin_epoch,
               end_epoch,
               train_shared,
               lr,
               lr_step,
               proposal,
               logger=None,
               output_path=None):
    # set up logger
    if not logger:
        logging.basicConfig()
        logger = logging.getLogger()
        logger.setLevel(logging.INFO)

    # load symbol
    sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
    sym = sym_instance.get_symbol_rfcn(cfg, is_train=True)

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = cfg.TRAIN.BATCH_IMAGES * batch_size

    # print cfg
    pprint.pprint(cfg)
    logger.info('training rcnn cfg:{}\n'.format(pprint.pformat(cfg)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in image_set.split('+')]
    roidbs = [
        load_proposal_roidb(dataset,
                            image_set,
                            root_path,
                            dataset_path,
                            proposal=proposal,
                            append_gt=True,
                            flip=flip,
                            result_path=output_path)
        for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, cfg)
    means, stds = add_bbox_regression_targets(roidb, cfg)

    # load training data
    train_data = ROIIter(roidb,
                         cfg,
                         batch_size=input_batch_size,
                         shuffle=shuffle,
                         ctx=ctx,
                         aspect_grouping=cfg.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_data_shape = [('data', (cfg.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in cfg.SCALES]),
                                max([v[1] for v in cfg.SCALES])))]

    # infer shape
    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if resume:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight_rfcn(cfg, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # prepare training
    # create solver
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]
    if train_shared:
        fixed_param_prefix = cfg.network.FIXED_PARAMS_SHARED
    else:
        fixed_param_prefix = cfg.network.FIXED_PARAMS
    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    if cfg.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    eval_metric = metric.RCNNAccMetric(cfg)
    cls_metric = metric.RCNNLogLossMetric(cfg)
    bbox_metric = metric.RCNNL1LossMetric(cfg)
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=frequent)
    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint(prefix, means, stds)
    ]
    # decide learning rate
    base_lr = lr
    lr_factor = cfg.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              cfg.TRAIN.warmup,
                                              cfg.TRAIN.warmup_lr,
                                              cfg.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {
        'momentum': cfg.TRAIN.momentum,
        'wd': cfg.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    # train

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
def train_net(args, ctx, pretrained, pretrained_flow, epoch, prefix,
              begin_epoch, end_epoch, lr, lr_step):
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_train_symbol(config)
    feat_sym = sym.get_internals()['rpn_cls_score_output']
    feat_conv_3x3_relu = sym.get_internals()['feat_conv_3x3_relu_output']

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [
        load_gt_roidb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, config)
    # load training data
    train_data = AnchorLoader(feat_sym,
                              feat_conv_3x3_relu,
                              roidb,
                              config,
                              batch_size=input_batch_size,
                              shuffle=config.TRAIN.SHUFFLE,
                              ctx=ctx,
                              feat_stride=config.network.RPN_FEAT_STRIDE,
                              anchor_scales=config.network.ANCHOR_SCALES,
                              anchor_ratios=config.network.ANCHOR_RATIOS,
                              aspect_grouping=config.TRAIN.ASPECT_GROUPING,
                              normalize_target=config.network.NORMALIZE_RPN,
                              bbox_mean=config.network.ANCHOR_MEANS,
                              bbox_std=config.network.ANCHOR_STDS)

    # infer max shape
    #max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))),
    #                  ('data_ref', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES]))),
    #                  ('eq_flag', (1,))]
    data_shape1 = {
        'data_ref':
        (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]),
         max([v[1] for v in config.SCALES])),
    }
    _, feat_shape111, _ = feat_conv_3x3_relu.infer_shape(**data_shape1)

    max_data_shape = [('data_ref', (config.TRAIN.BATCH_IMAGES, 3,
                                    max([v[0] for v in config.SCALES]),
                                    max([v[1] for v in config.SCALES]))),
                      ('eq_flag', (1, )),
                      ('motion_vector', (config.TRAIN.BATCH_IMAGES, 2,
                                         int(feat_shape111[0][2]),
                                         int(feat_shape111[0][3])))]

    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    print 'providing maximum shape', max_data_shape, max_label_shape

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        #arg_params_flow, aux_params_flow = load_param(pretrained_flow, epoch, convert=True)
        #arg_params.update(arg_params_flow)
        #aux_params.update(aux_params_flow)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [
            rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric,
            cls_metric, bbox_metric
    ]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS),
                    2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS),
                   2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint(prefix, means, stds)
    ]
    # decide learning rate
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    print('Start to train model')
    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
Ejemplo n.º 3
0
def train_net(args, ctx, pretrained, pretrained_base, pretrained_ec, epoch,
              prefix, begin_epoch, end_epoch, lr, lr_step):
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_train_symbol(config)

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    segdbs = [
        load_gt_segdb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      result_path=final_output_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    segdb = merge_segdb(segdbs)

    # load training data
    train_data = TrainDataLoader(sym,
                                 segdb,
                                 config,
                                 batch_size=input_batch_size,
                                 crop_height=config.TRAIN.CROP_HEIGHT,
                                 crop_width=config.TRAIN.CROP_WIDTH,
                                 shuffle=config.TRAIN.SHUFFLE,
                                 ctx=ctx)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES]))),
                      ('data_ref', (config.TRAIN.KEY_INTERVAL - 1, 3,
                                    max([v[0] for v in config.SCALES]),
                                    max([v[1] for v in config.SCALES]))),
                      ('eq_flag', (1, ))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    print 'providing maximum shape', max_data_shape, max_label_shape

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        print pretrained
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        arg_params_base, aux_params_base = load_param(pretrained_base,
                                                      epoch,
                                                      convert=True)
        arg_params.update(arg_params_base)
        aux_params.update(aux_params_base)
        arg_params_ec, aux_params_ec = load_param(
            pretrained_ec,
            epoch,
            convert=True,
            argprefix=config.TRAIN.arg_prefix)
        arg_params.update(arg_params_ec)
        aux_params.update(aux_params_ec)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    fcn_loss_metric = metric.FCNLogLossMetric(config.default.frequent *
                                              batch_size)
    eval_metrics = mx.metric.CompositeEvalMetric()

    for child_metric in [fcn_loss_metric]:
        eval_metrics.add(child_metric)

    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    epoch_end_callback = mx.callback.module_checkpoint(
        mod, prefix, period=1, save_optimizer_states=True)

    # decide learning rate
    base_lr = lr
    lr_factor = 0.1
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(segdb) / batch_size) for epoch in lr_epoch_diff
    ]
    print 'lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters

    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)

    # optimizer
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
Ejemplo n.º 4
0
def train_net(args, ctx, pretrained_dir, pretrained_resnet, epoch, prefix,
              begin_epoch, end_epoch, lr, lr_step):
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    git_commit_id = commands.getoutput('git rev-parse HEAD')
    print("Git commit id:", git_commit_id)
    logger.info('Git commit id: {}'.format(git_commit_id))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [
        load_gt_roidb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      motion_iou_path=config.dataset.motion_iou_path,
                      flip=config.TRAIN.FLIP,
                      use_philly=args.usePhilly) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, config)
    # load training data
    train_data = AnchorLoader(feat_sym,
                              roidb,
                              config,
                              batch_size=input_batch_size,
                              shuffle=config.TRAIN.SHUFFLE,
                              ctx=ctx,
                              feat_stride=config.network.RPN_FEAT_STRIDE,
                              anchor_scales=config.network.ANCHOR_SCALES,
                              anchor_ratios=config.network.ANCHOR_RATIOS,
                              aspect_grouping=config.TRAIN.ASPECT_GROUPING,
                              normalize_target=config.network.NORMALIZE_RPN,
                              bbox_mean=config.network.ANCHOR_MEANS,
                              bbox_std=config.network.ANCHOR_STDS)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    print('providing maximum shape', max_data_shape, max_label_shape)

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    # load and initialize params
    params_loaded = False
    if config.TRAIN.RESUME:
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)
        print('continue training from ', begin_epoch)
        logger.info('continue training from ', begin_epoch)
        params_loaded = True
    elif config.TRAIN.AUTO_RESUME:
        for cur_epoch in range(end_epoch - 1, begin_epoch, -1):
            params_filename = '{}-{:04d}.params'.format(prefix, cur_epoch)
            states_filename = '{}-{:04d}.states'.format(prefix, cur_epoch)
            if os.path.exists(params_filename) and os.path.exists(
                    states_filename):
                begin_epoch = cur_epoch
                arg_params, aux_params = load_param(prefix,
                                                    cur_epoch,
                                                    convert=True)
                mod._preload_opt_states = states_filename
                print('auto continue training from {}, {}'.format(
                    params_filename, states_filename))
                logger.info('auto continue training from {}, {}'.format(
                    params_filename, states_filename))
                params_loaded = True
                break
    if not params_loaded:
        arg_params, aux_params = load_param(os.path.join(
            pretrained_dir, pretrained_resnet),
                                            epoch,
                                            convert=True)

    sym_instance.init_weight(config, arg_params, aux_params)
    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # decide training params
    # metric
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()

    for child_metric in [eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    if config.TRAIN.JOINT_TRAINING or (not config.TRAIN.LEARN_NMS):
        rpn_eval_metric = metric.RPNAccMetric()
        rpn_cls_metric = metric.RPNLogLossMetric()
        rpn_bbox_metric = metric.RPNL1LossMetric()
        for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric]:
            eval_metrics.add(child_metric)
    if config.TRAIN.LEARN_NMS:
        eval_metrics.add(metric.NMSLossMetric(config, 'pos'))
        eval_metrics.add(metric.NMSLossMetric(config, 'neg'))
        eval_metrics.add(metric.NMSAccMetric(config))

    # callback
    batch_end_callback = [
        callback.Speedometer(train_data.batch_size, frequent=args.frequent)
    ]

    if config.USE_PHILLY:
        total_iter = (end_epoch - begin_epoch) * len(roidb) / input_batch_size
        progress_frequent = min(args.frequent * 10, 100)
        batch_end_callback.append(
            callback.PhillyProgressCallback(total_iter, progress_frequent))

    means = np.tile(np.array(config.TRAIN.BBOX_MEANS),
                    2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS),
                   2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint(prefix, means, stds)
    ]
    # decide learning rate
    # base_lr = lr * len(ctx) * config.TRAIN.BATCH_IMAGES
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
def train_rcnn(cfg, dataset, image_set, root_path, dataset_path,
               frequent, kvstore, flip, shuffle, resume,
               ctx, pretrained, epoch, prefix, begin_epoch, end_epoch,
               train_shared, lr, lr_step, proposal, logger=None, output_path=None):
    mx.random.seed(3)
    np.random.seed(3)
    # set up logger
    if not logger:
        logging.basicConfig()
        logger = logging.getLogger()
        logger.setLevel(logging.INFO)

    # load symbol
    sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
    sym = sym_instance.get_symbol_rcnn(cfg, is_train=True)

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = cfg.TRAIN.BATCH_IMAGES * batch_size

    # print cfg
    pprint.pprint(cfg)
    logger.info('training rcnn cfg:{}\n'.format(pprint.pformat(cfg)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in image_set.split('+')]
    roidbs = [load_proposal_roidb(dataset, image_set, root_path, dataset_path,
                                  proposal=proposal, append_gt=True, flip=flip, result_path=output_path)
              for image_set in image_sets]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, cfg)
    means, stds = add_bbox_regression_targets(roidb, cfg)

    # load training data
    train_data = ROIIter(roidb, cfg, batch_size=input_batch_size, shuffle=shuffle,
                         ctx=ctx, aspect_grouping=cfg.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_data_shape = [('data', (cfg.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in cfg.SCALES]), max([v[1] for v in cfg.SCALES])))]

    # infer shape
    data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if resume:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight_rcnn(cfg, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict)

    # prepare training
    # create solver
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]
    if train_shared:
        fixed_param_prefix = cfg.network.FIXED_PARAMS_SHARED
    else:
        fixed_param_prefix = cfg.network.FIXED_PARAMS
    mod = MutableModule(sym, data_names=data_names, label_names=label_names,
                        logger=logger, context=ctx,
                        max_data_shapes=[max_data_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix)

    if cfg.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch)


    # decide training params
    # metric
    eval_metric = metric.RCNNAccMetric(cfg)
    cls_metric = metric.RCNNLogLossMetric(cfg)
    bbox_metric = metric.RCNNL1LossMetric(cfg)
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=frequent)
    epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True),
                          callback.do_checkpoint(prefix, means, stds)]
    # decide learning rate
    base_lr = lr
    lr_factor = cfg.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
    lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, cfg.TRAIN.warmup, cfg.TRAIN.warmup_lr, cfg.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {'momentum': cfg.TRAIN.momentum,
                        'wd': cfg.TRAIN.wd,
                        'learning_rate': lr,
                        'lr_scheduler': lr_scheduler,
                        'rescale_grad': 1.0,
                        'clip_gradient': None}

    # train

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback, kvstore=kvstore,
            optimizer='sgd', optimizer_params=optimizer_params,
            arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
Ejemplo n.º 6
0
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step):
    logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path,
                            flip=config.TRAIN.FLIP)
              for image_set in image_sets]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, config)

    # load training data
    train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx,
                              feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES,
                              anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    print 'providing maximum shape', max_data_shape, max_label_shape

    data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(sym, data_names=data_names, label_names=label_names,
                        logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)],
                        max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)]
    # decide learning rate
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
    lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {'momentum': config.TRAIN.momentum,
                        'wd': config.TRAIN.wd,
                        'learning_rate': lr,
                        'lr_scheduler': lr_scheduler,
                        'rescale_grad': 1.0,
                        'clip_gradient': None}

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback, kvstore=config.default.kvstore,
            optimizer='sgd', optimizer_params=optimizer_params,
            arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr,
              lr_step):
    # 创建logger和对应的输出路径
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)
    # 特征symbol,从网络sym中获取rpn_cls_score_output
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    # 使能多GPU训练,每一张卡训练一个batch
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    # 加载数据集同时准备训练的imdb,使用+分割不同的图像数据集,比如2007_trainval+2012_trainval
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    # load gt roidb加载gt roidb,根据数据集类型,图像集具体子类,数据集根目录和数据集路径,同时配置相关TRAIN为FLIP来增广数据
    roidbs = [
        load_gt_roidb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    # 合并不同的roidb
    roidb = merge_roidb(roidbs)
    # 根据配置文件中对应的过滤规则来滤出roi
    roidb = filter_roidb(roidb, config)
    # load training data
    # 加载训练数据,anchor Loader为对应分类和回归的锚点加载,通过对应的roidb,查找对应的正负样本的锚点,该生成器需要参数锚点尺度,ratios和对应的feature的stride
    train_data = AnchorLoader(feat_sym,
                              roidb,
                              config,
                              batch_size=input_batch_size,
                              shuffle=config.TRAIN.SHUFFLE,
                              ctx=ctx,
                              feat_stride=config.network.RPN_FEAT_STRIDE,
                              anchor_scales=config.network.ANCHOR_SCALES,
                              anchor_ratios=config.network.ANCHOR_RATIOS,
                              aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    print('providing maximum shape', max_data_shape, max_label_shape)

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    # 加载并且初始化参数,如果训练中是继续上次的训练,也就是RESUME这一flag设置为True
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        # 从前缀和being_epoch中加载RESUME的arg参数和aux参数,同时需要转换为GPU NDArray
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    # 检查相关参数的shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # create solver
    # 创造求解器
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    # 以下主要是RPN和RCNN相关的一些评价指标
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    # mxnet中合成的评估指标,可以增加以上所有的评估指标,包括rpn_eval_metrix、rpn_cls_metric、rpn_bbox_metric和rcnn_eval_metric、rcnn_cls_metric、rcnn_bbox_metric
    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [
            rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric,
            cls_metric, bbox_metric
    ]:
        eval_metrics.add(child_metric)

    # callback
    # batch后的callback回调以及epoch后的callback回调
    # batch_end_callback是在训练一定batch_size后进行的相应回调,回调频率为frequent
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    # means和stds,如果BBOX是类无关的,那么means为复制means两个,否则复制数量为NUM_CLASSES
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS),
                    2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS),
                   2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    # epoch为一个周期结束后的回调
    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint(prefix, means, stds)
    ]
    # decide learning rate
    # 以下主要根据不同的学习率调整策略来决定学习率,这里如voc中默认的初始lr为0.0005
    base_lr = lr
    # 学习率调整因子
    lr_factor = config.TRAIN.lr_factor
    # 学习率调整周期,lr_step一般格式为3, 5,表示在3和5周期中进行学习率调整
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    # 如果当前周期大于begin_epoch那么lr_epoch_diff为epoch-begin_epoch
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    print('lr_epoch', lr_epoch, 'begin_epoch', begin_epoch)
    # 通过当前的epoch来计算当前应该具有的lr
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    # learning rate调整机制,warmup multi factor scheduler预训练多因子调整器
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)
    # optimizer
    # 优化器参数,包含momentum、wd、lr、lr_scheduler、rescale_grad和clip_gradient
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    if not isinstance(train_data, PrefetchingIter):
        print('!!!train_data is not PrefetchingIter!!!')
        train_data = PrefetchingIter(train_data)

    # train
    # 模型训练过程,输入train_data,评估指标包括eval_metrics等一系列指标,每一个epoch结束后进入epoch_end_callback,每一个batch结束后进入batch_end_callback,优化器使用sgd,同时优化参数、输入参数和辅助参数以及begin周期和end周期
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step):
    np.random.seed(0)
    mx.random.seed(0)
    logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path,
                            flip=config.TRAIN.FLIP)
              for image_set in image_sets]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, config)

    # load training data
    train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx,
                              feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES,
                              anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # infer max shape

    # max_dats_shape=['data', (1,3,600,1000)]
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
    # max_data_shape=[], max_lable_shape=[]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    logger.info('providing maximum shape'+str(max_data_shape)+"  "+str(max_label_shape))

    data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single)

    # add by chaojie
    logger.info("data_sahpe_dict:\n{}".format(pprint.pformat(data_shape_dict)))

    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)
    pprint.pprint(sym_instance.arg_shape_dict)

    logger.info("sym_instance.arg_shape_dict\n")
    logging.info(pprint.pformat(sym_instance.arg_shape_dict))
    #dot = mx.viz.plot_network(sym, node_attrs={'shape': 'rect', 'fixedsize': 'false'})
    #dot.render(os.path.join('./output/rcnn/network_vis', config.symbol + '_rcnn'))

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(sym, data_names=data_names, label_names=label_names,
                        logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)],
                        max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch)

    # decide training params
    # metric
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    if config.TRAIN.JOINT_TRAINING or (not config.TRAIN.LEARN_NMS):
        rpn_eval_metric = metric.RPNAccMetric()
        rpn_cls_metric = metric.RPNLogLossMetric()
        rpn_bbox_metric = metric.RPNL1LossMetric()
        for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric]:
            eval_metrics.add(child_metric)
    for child_metric in [eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    if config.TRAIN.LEARN_NMS:
        eval_metrics.add(metric.NMSLossMetric(config, 'pos'))
        eval_metrics.add(metric.NMSLossMetric(config, 'neg'))
        eval_metrics.add(metric.NMSAccMetric(config))

    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True),
                          callback.do_checkpoint(prefix, means, stds)]
    # decide learning rate
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
    lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {'momentum': config.TRAIN.momentum,
                        'wd': config.TRAIN.wd,
                        'learning_rate': lr,
                        'lr_scheduler': lr_scheduler,
                        'rescale_grad': 1.0,
                        'clip_gradient': None}

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback, kvstore=config.default.kvstore,
            optimizer='sgd', optimizer_params=optimizer_params,
            arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
Ejemplo n.º 9
0
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr,
              lr_step):
    mx.random.seed(3)
    np.random.seed(3)
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)

    feat_pyramid_level = np.log2(config.network.RPN_FEAT_STRIDE).astype(int)
    feat_sym = [
        sym.get_internals()['rpn_cls_score_p' + str(x) + '_output']
        for x in feat_pyramid_level
    ]
    print('load symbol END')
    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    print('Start load dataset and prepare imdb for training')
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [
        load_gt_roidb_poly(config.dataset.dataset,
                           image_set,
                           config.dataset.root_path,
                           config.dataset.dataset_path,
                           flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, config)
    print('Start load training data')
    # load training data

    train_data = PyramidAnchorIterator_poly(
        feat_sym,
        roidb,
        config,
        batch_size=input_batch_size,
        shuffle=config.TRAIN.SHUFFLE,
        ctx=ctx,
        feat_strides=config.network.RPN_FEAT_STRIDE,
        anchor_scales=config.network.ANCHOR_SCALES,
        anchor_ratios=config.network.ANCHOR_RATIOS,
        aspect_grouping=config.TRAIN.ASPECT_GROUPING,
        allowed_border=np.inf)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 300, 9)))
    print 'providing maximum shape', max_data_shape, max_label_shape

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    rpn_fg_metric = metric.RPNFGFraction(config)
    eval_fg_metric = metric.RCNNFGAccuracy(config)
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    # add Rroi loss here
    RCNN_proposal_fraction_metric = metric.RCNNFGFraction(config)
    Rroi_fg_accuracy = metric.RRoIRCNNFGAccuracy(config)
    Rroi_accuracy = metric.RRoIAccMetric(config)
    Rroi_cls_metric = metric.RRoIRCNNLogLossMetric(config)
    Rroi_bbox_metric = metric.RRoIRCNNL1LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [
            rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, rpn_fg_metric,
            eval_fg_metric, eval_metric, cls_metric, bbox_metric,
            RCNN_proposal_fraction_metric, Rroi_fg_accuracy, Rroi_accuracy,
            Rroi_cls_metric, Rroi_bbox_metric
    ]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS),
                    2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS),
                   2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    Rroi_means = np.tile(
        np.array(config.TRAIN.RRoI_BBOX_MEANS), 2
        if config.network.RRoI_CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    Rroi_stds = np.tile(
        np.array(config.TRAIN.RRoI_BBOX_STDS), 2
        if config.network.RRoI_CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)

    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint_Rroi(prefix, means, stds, Rroi_means, Rroi_stds)
    ]

    # decide learning rate
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'clip_gradient': None
    }
    #
    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr,
              lr_step):
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [
        load_gt_roidb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, config)
    # load training data
    train_data = AnchorLoader(feat_sym,
                              roidb,
                              config,
                              batch_size=input_batch_size,
                              shuffle=config.TRAIN.SHUFFLE,
                              ctx=ctx,
                              feat_stride=config.network.RPN_FEAT_STRIDE,
                              anchor_scales=config.network.ANCHOR_SCALES,
                              anchor_ratios=config.network.ANCHOR_RATIOS,
                              aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    print('providing maximum shape', max_data_shape, max_label_shape)

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    #if config.TRAIN.RESUME:
    #    print('continue training from ', begin_epoch)
    #    arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    #else:
    #    arg_params, aux_params = load_param(pretrained, epoch, convert=True)
    #    sym_instance.init_weight(config, arg_params, aux_params)

    print('transfer learning...')

    # Choose the initialization weights (COCO or UADETRAC or pretrained)
    #arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/output/rfcn_dcn_Shuo_UADTRAC/resnet_v1_101_voc0712_rfcn_dcn_Shuo_UADETRAC/trainlist_full/rfcn_UADTRAC', 5, convert=True)
    #arg_params, aux_params = load_param('/raid10/home_ext/Deformable-ConvNets/model/rfcn_dcn_coco', 0, convert=True)
    arg_params, aux_params = load_param(
        '/raid10/home_ext/Deformable-ConvNets/output/rfcn_dcn_Shuo_AICity/resnet_v1_101_voc0712_rfcn_dcn_Shuo_AICityVOC1080_FreezeCOCO_rpnOnly_all/1080_all/rfcn_AICityVOC1080_FreezeCOCO_rpnOnly_all',
        4,
        convert=True)

    sym_instance.init_weight_Shuo(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    #freeze parameters using fixed_param_names:list of str
    para_file = open(
        '/raid10/home_ext/Deformable-ConvNets/rfcn/symbols/arg_params.txt')
    para_list = [line.split('<')[0] for line in para_file.readlines()]
    #    para_list.remove('rfcn_cls_weight')
    #    para_list.remove('rfcn_cls_bias')
    #    para_list.remove('rfcn_cls_offset_t_weight')
    #    para_list.remove('rfcn_cls_offset_t_bias')
    #
    para_list.remove('res5a_branch2b_offset_weight')
    para_list.remove('res5a_branch2b_offset_bias')
    para_list.remove('res5b_branch2b_offset_weight')
    para_list.remove('res5b_branch2b_offset_bias')
    para_list.remove('res5c_branch2b_offset_weight')
    para_list.remove('res5c_branch2b_offset_bias')
    para_list.remove('conv_new_1_weight')
    para_list.remove('conv_new_1_bias')
    para_list.remove('rfcn_bbox_weight')
    para_list.remove('rfcn_bbox_bias')
    para_list.remove('rfcn_bbox_offset_t_weight')
    para_list.remove('rfcn_bbox_offset_t_bias')

    mod = MutableModule_Shuo(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix,
        fixed_param_names=para_list)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [
            rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric,
            cls_metric, bbox_metric
    ]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS),
                    2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS),
                   2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint(prefix, means, stds)
    ]
    # decide learning rate
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
Ejemplo n.º 11
0
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr, lr_step):
    # 创建logger和对应的输出路径
    logger, final_output_path = create_logger(config.output_path, args.cfg, config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'), final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)
    # 特征symbol,从网络sym中获取rpn_cls_score_output
    feat_sym = sym.get_internals()['rpn_cls_score_output']

    # setup multi-gpu
    # 使能多GPU训练,每一张卡训练一个batch
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    # 加载数据集同时准备训练的imdb,使用+分割不同的图像数据集,比如2007_trainval+2012_trainval
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    # load gt roidb加载gt roidb,根据数据集类型,图像集具体子类,数据集根目录和数据集路径,同时配置相关TRAIN为FLIP来增广数据
    roidbs = [load_gt_roidb(config.dataset.dataset, image_set, config.dataset.root_path, config.dataset.dataset_path,
                            flip=config.TRAIN.FLIP)
              for image_set in image_sets]
    # 合并不同的roidb
    roidb = merge_roidb(roidbs)
    # 根据配置文件中对应的过滤规则来滤出roi
    roidb = filter_roidb(roidb, config)
    # load training data
    # 加载训练数据,anchor Loader为对应分类和回归的锚点加载,通过对应的roidb,查找对应的正负样本的锚点,该生成器需要参数锚点尺度,ratios和对应的feature的stride
    train_data = AnchorLoader(feat_sym, roidb, config, batch_size=input_batch_size, shuffle=config.TRAIN.SHUFFLE, ctx=ctx,
                              feat_stride=config.network.RPN_FEAT_STRIDE, anchor_scales=config.network.ANCHOR_SCALES,
                              anchor_ratios=config.network.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    print('providing maximum shape', max_data_shape, max_label_shape)

    data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(sym, data_names=data_names, label_names=label_names,
                        logger=logger, context=ctx, max_data_shapes=[max_data_shape for _ in range(batch_size)],
                        max_label_shapes=[max_label_shape for _ in range(batch_size)], fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states'%(prefix, begin_epoch)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS), 2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True), callback.do_checkpoint(prefix, means, stds)]
    # decide learning rate
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
    lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, config.TRAIN.warmup, config.TRAIN.warmup_lr, config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {'momentum': config.TRAIN.momentum,
                        'wd': config.TRAIN.wd,
                        'learning_rate': lr,
                        'lr_scheduler': lr_scheduler,
                        'rescale_grad': 1.0,
                        'clip_gradient': None}

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback, kvstore=config.default.kvstore,
            optimizer='sgd', optimizer_params=optimizer_params,
            arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
Ejemplo n.º 12
0
def train_rcnn(cfg, dataset, image_set, root_path, dataset_path,
               frequent, kvstore, flip, shuffle, resume,
               ctx, pretrained, epoch, prefix, begin_epoch, end_epoch,
               train_shared, lr, lr_step, proposal, logger=None, output_path=None):
    mx.random.seed(0)
    np.random.seed(0)
    # set up logger
    if not logger:
        logging.basicConfig()
        logger = logging.getLogger()
        logger.setLevel(logging.INFO)

    # load symbol
    sym_instance = eval(cfg.symbol + '.' + cfg.symbol)()
    sym = sym_instance.get_symbol_rcnn(cfg, is_train=True)

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = cfg.TRAIN.BATCH_IMAGES * batch_size

    # print cfg
    pprint.pprint(cfg)
    logger.info('training rcnn cfg:{}\n'.format(pprint.pformat(cfg)))

    rpn_path = cfg.dataset.proposal_cache
    # load dataset and prepare imdb for training
    image_sets = [iset for iset in image_set.split('+')]
    roidbs = [load_proposal_roidb(dataset, image_set, root_path, dataset_path,
                                  proposal=proposal, append_gt=True, flip=flip, result_path=output_path,
                                  rpn_path=rpn_path, top_roi=cfg.TRAIN.TOP_ROIS)
              for image_set in image_sets]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, cfg)
    means, stds = add_bbox_regression_targets(roidb, cfg)

    # load training data
    train_data = ROIIter(roidb, cfg, batch_size=input_batch_size, shuffle=shuffle,
                         ctx=ctx, aspect_grouping=cfg.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_height = max([v[0] for v in cfg.SCALES])
    max_width = max([v[1] for v in cfg.SCALES])
    paded_max_height = max_height + cfg.network.IMAGE_STRIDE - max_height % cfg.network.IMAGE_STRIDE
    paded_max_width = max_width + cfg.network.IMAGE_STRIDE - max_width % (cfg.network.IMAGE_STRIDE)

    max_data_shape = [('data', (cfg.TRAIN.BATCH_IMAGES, 3, paded_max_height, paded_max_width))]
    # infer shape
    data_shape_dict = dict(train_data.provide_data_single + train_data.provide_label_single)
    sym_instance.infer_shape(data_shape_dict)
    # print shape
    pprint.pprint(sym_instance.arg_shape_dict)
    logging.info(pprint.pformat(sym_instance.arg_shape_dict))

    max_batch_roi = cfg.TRAIN.TOP_ROIS if cfg.TRAIN.BATCH_ROIS == -1 else cfg.TRAIN.BATCH_ROIS
    num_class = 2 if cfg.CLASS_AGNOSTIC else cfg.dataset.NUM_CLASSES
    max_label_shape = [('label', (cfg.TRAIN.BATCH_IMAGES, max_batch_roi)),
                       ('bbox_target', (cfg.TRAIN.BATCH_IMAGES, max_batch_roi, num_class * 4)),
                       ('bbox_weight', (cfg.TRAIN.BATCH_IMAGES, max_batch_roi, num_class * 4))]

    if cfg.network.USE_NONGT_INDEX:
        max_label_shape.append(('nongt_index', (2000,)))

    if cfg.network.ROIDispatch:
        max_data_shape.append(('rois_0', (cfg.TRAIN.BATCH_IMAGES, max_batch_roi / 4, 5)))
        max_data_shape.append(('rois_1', (cfg.TRAIN.BATCH_IMAGES, max_batch_roi / 4, 5)))
        max_data_shape.append(('rois_2', (cfg.TRAIN.BATCH_IMAGES, max_batch_roi / 4, 5)))
        max_data_shape.append(('rois_3', (cfg.TRAIN.BATCH_IMAGES, max_batch_roi / 4, 5)))
    else:
        max_data_shape.append(('rois', (cfg.TEST.PROPOSAL_POST_NMS_TOP_N + 30, 5)))

    #dot = mx.viz.plot_network(sym, node_attrs={'shape': 'rect', 'fixedsize': 'false'})
    #dot.render(os.path.join('./output/rcnn/network_vis', cfg.symbol + cfg.TRAIN.model_prefix))

    # load and initialize params
    if resume:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight_rcnn(cfg, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict)

    # prepare training
    # create solver
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]
    if train_shared:
        fixed_param_prefix = cfg.network.FIXED_PARAMS_SHARED
    else:
        fixed_param_prefix = cfg.network.FIXED_PARAMS

    if cfg.network.ROIDispatch:
        mod = MutableModule(sym, data_names=data_names, label_names=label_names,
                            logger=logger, context=ctx,
                            max_data_shapes=[max_data_shape for _ in range(batch_size)],
                            max_label_shapes=[max_label_shape for _ in range(batch_size)],
                            fixed_param_prefix=fixed_param_prefix)
    else:
        mod = MutableModule(sym, data_names=data_names, label_names=label_names,
                            logger=logger, context=ctx,
                            max_data_shapes=[max_data_shape for _ in range(batch_size)],
                            max_label_shapes=[max_label_shape for _ in range(batch_size)],
                            fixed_param_prefix=fixed_param_prefix)
    if cfg.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    eval_metric = metric.RCNNAccMetric(cfg)
    cls_metric = metric.RCNNLogLossMetric(cfg)
    bbox_metric = metric.RCNNL1LossMetric(cfg)
    eval_metrics = mx.metric.CompositeEvalMetric()
    for child_metric in [eval_metric, cls_metric, bbox_metric]:
        eval_metrics.add(child_metric)
    if cfg.TRAIN.LEARN_NMS:
        eval_metrics.add(metric.NMSLossMetric(cfg, 'pos'))
        eval_metrics.add(metric.NMSLossMetric(cfg, 'neg'))
        eval_metrics.add(metric.NMSAccMetric(cfg))
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size, frequent=frequent)
    epoch_end_callback = [mx.callback.module_checkpoint(mod, prefix, period=1, save_optimizer_states=True),
                          callback.do_checkpoint(prefix, means, stds)]
    # decide learning rate
    base_lr = lr
    lr_factor = cfg.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
    lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor, cfg.TRAIN.warmup, cfg.TRAIN.warmup_lr,
                                              cfg.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {'momentum': cfg.TRAIN.momentum,
                        'wd': cfg.TRAIN.wd,
                        'learning_rate': lr,
                        'lr_scheduler': lr_scheduler,
                        'rescale_grad': 1.0,
                        'clip_gradient': None}

    # train

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback, kvstore=kvstore,
            optimizer='sgd', optimizer_params=optimizer_params,
            arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
Ejemplo n.º 13
0
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr,
              lr_step):
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)
    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()

    sym = sym_instance.get_retina_symbol(config, is_train=True)
    feat_sym = []

    feat_sym_p4 = sym.get_internals()['box_pred/p4_output']
    feat_sym_p5 = sym.get_internals()['box_pred/p5_output']
    feat_sym_p6 = sym.get_internals()['box_pred/p6_output']
    feat_sym_p7 = sym.get_internals()['box_pred/p7_output']

    feat_sym.append(feat_sym_p4)
    feat_sym.append(feat_sym_p5)
    feat_sym.append(feat_sym_p6)
    feat_sym.append(feat_sym_p7)
    #######
    feat_stride = []
    feat_stride.append(config.network.p4_RPN_FEAT_STRIDE)
    feat_stride.append(config.network.p5_RPN_FEAT_STRIDE)
    feat_stride.append(config.network.p6_RPN_FEAT_STRIDE)
    feat_stride.append(config.network.p7_RPN_FEAT_STRIDE)
    anchor_scales = []

    anchor_scales.append(config.network.p4_ANCHOR_SCALES)
    anchor_scales.append(config.network.p5_ANCHOR_SCALES)
    anchor_scales.append(config.network.p6_ANCHOR_SCALES)
    anchor_scales.append(config.network.p7_ANCHOR_SCALES)
    anchor_ratios = []

    anchor_ratios.append(config.network.p4_ANCHOR_RATIOS)
    anchor_ratios.append(config.network.p5_ANCHOR_RATIOS)
    anchor_ratios.append(config.network.p6_ANCHOR_RATIOS)
    anchor_ratios.append(config.network.p7_ANCHOR_RATIOS)
    #############

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [
        load_gt_roidb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)

    roidb = filter_roidb(roidb, config)

    # load training data
    train_data = AnchorLoader(feat_sym,
                              feat_stride,
                              anchor_scales,
                              anchor_ratios,
                              roidb,
                              config,
                              batch_size=input_batch_size,
                              shuffle=config.TRAIN.SHUFFLE,
                              ctx=ctx,
                              aspect_grouping=config.TRAIN.ASPECT_GROUPING)
    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    print 'providing maximum shape', max_data_shape, max_label_shape
    # infer max shape

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)
    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    Retina_toal_eval_metric = metric.RetinaToalAccMetric()
    Retina_cls_metric = metric.RetinaFocalLossMetric()
    Retina_bbox_metric = metric.RetinaL1LossMetric()

    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [
            Retina_toal_eval_metric, Retina_cls_metric, Retina_bbox_metric
    ]:
        eval_metrics.add(child_metric)
    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS),
                    2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS),
                   2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint(prefix, means, stds)
    ]
    # decide learning rate
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    print lr_step.split(',')
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {
        'learning_rate': lr,
        'wd': 0.0001,
    }

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)
    # train
    initializer = mx.init.MSRAPrelu(factor_type='out', slope=0)
    # adam = mx.optimizer.AdaDelta(rho=0.09,  epsilon=1e-14)
    #optimizer_params=optimizer_params,

    print "-----------------------train--------------------------------"
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='adam',
            optimizer_params=optimizer_params,
            initializer=initializer,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
Ejemplo n.º 14
0
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch, lr,
              lr_step):
    if config.dataset.dataset != 'JSONList':
        logger, final_output_path = create_logger(config.output_path, args.cfg,
                                                  config.dataset.image_set)
        prefix = os.path.join(final_output_path, prefix)
    else:
        import datetime
        import logging
        final_output_path = config.output_path
        prefix = prefix + '_' + datetime.datetime.now().strftime(
            "%Y-%m-%d_%H_%M_%S")
        prefix = os.path.join(final_output_path, prefix)
        shutil.copy2(args.cfg, prefix + '.yaml')
        log_file = prefix + '.log'
        head = '%(asctime)-15s %(message)s'
        logging.basicConfig(filename=log_file, format=head)
        logger = logging.getLogger()
        logger.setLevel(logging.INFO)
        logger.info('prefix: %s' % prefix)
        print('prefix: %s' % prefix)

    # load symbol
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=True)

    # setup multi-gpu
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # print config
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # load dataset and prepare imdb for training
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [
        load_gt_roidb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, config)
    # load training data
    if config.network.MULTI_RPN:
        num_layers = len(config.network.MULTI_RPN_STRIDES)
        rpn_syms = [
            sym.get_internals()['rpn%d_cls_score_output' % l]
            for l in range(num_layers)
        ]
        train_data = PyramidAnchorLoader(
            rpn_syms,
            roidb,
            config,
            batch_size=input_batch_size,
            shuffle=config.TRAIN.SHUFFLE,
            ctx=ctx,
            feat_strides=config.network.MULTI_RPN_STRIDES,
            anchor_scales=config.network.ANCHOR_SCALES,
            anchor_ratios=config.network.ANCHOR_RATIOS,
            aspect_grouping=config.TRAIN.ASPECT_GROUPING,
            allowed_border=np.inf)
    else:
        feat_sym = sym.get_internals()['rpn_cls_score_output']
        train_data = AnchorLoader(feat_sym,
                                  roidb,
                                  config,
                                  batch_size=input_batch_size,
                                  shuffle=config.TRAIN.SHUFFLE,
                                  ctx=ctx,
                                  feat_stride=config.network.RPN_FEAT_STRIDE,
                                  anchor_scales=config.network.ANCHOR_SCALES,
                                  anchor_ratios=config.network.ANCHOR_RATIOS,
                                  aspect_grouping=config.TRAIN.ASPECT_GROUPING)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES])))]
    max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
    max_data_shape.append(('gt_boxes', (config.TRAIN.BATCH_IMAGES, 100, 5)))
    print('providing maximum shape', max_data_shape, max_label_shape)

    data_shape_dict = dict(train_data.provide_data_single +
                           train_data.provide_label_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # load and initialize params
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        sym_instance.init_weight(config, arg_params, aux_params)

    # check parameter shapes
    sym_instance.check_parameter_shapes(arg_params, aux_params,
                                        data_shape_dict)

    # create solver
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = [k[0] for k in train_data.provide_data_single]
    label_names = [k[0] for k in train_data.provide_label_single]

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=[max_label_shape for _ in range(batch_size)],
        fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # decide training params
    # metric
    rpn_eval_metric = metric.RPNAccMetric()
    rpn_cls_metric = metric.RPNLogLossMetric()
    rpn_bbox_metric = metric.RPNL1LossMetric()
    eval_metric = metric.RCNNAccMetric(config)
    cls_metric = metric.RCNNLogLossMetric(config)
    bbox_metric = metric.RCNNL1LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()
    # rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric
    for child_metric in [
            rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric,
            cls_metric, bbox_metric
    ]:
        eval_metrics.add(child_metric)
    if config.network.PREDICT_KEYPOINTS:
        kps_cls_acc = metric.KeypointAccMetric(config)
        kps_cls_loss = metric.KeypointLogLossMetric(config)
        kps_pos_loss = metric.KeypointL1LossMetric(config)
        eval_metrics.add(kps_cls_acc)
        eval_metrics.add(kps_cls_loss)
        eval_metrics.add(kps_pos_loss)

    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=args.frequent)
    means = np.tile(np.array(config.TRAIN.BBOX_MEANS),
                    2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    stds = np.tile(np.array(config.TRAIN.BBOX_STDS),
                   2 if config.CLASS_AGNOSTIC else config.dataset.NUM_CLASSES)
    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint(prefix, means, stds)
    ]
    # decide learning rate
    base_lr = lr
    lr_factor = config.TRAIN.lr_factor
    lr_epoch = [float(epoch) for epoch in lr_step.split(',')]
    lr_epoch_diff = [
        epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch
    ]
    lr = base_lr * (lr_factor**(len(lr_epoch) - len(lr_epoch_diff)))
    lr_iters = [
        int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff
    ]
    print('lr', lr, 'lr_epoch_diff', lr_epoch_diff, 'lr_iters', lr_iters)
    lr_scheduler = WarmupMultiFactorScheduler(lr_iters, lr_factor,
                                              config.TRAIN.warmup,
                                              config.TRAIN.warmup_lr,
                                              config.TRAIN.warmup_step)
    # optimizer
    optimizer_params = {
        'momentum': config.TRAIN.momentum,
        'wd': config.TRAIN.wd,
        'learning_rate': lr,
        'lr_scheduler': lr_scheduler,
        'rescale_grad': 1.0,
        'clip_gradient': None
    }

    if not isinstance(train_data, PrefetchingIter):
        train_data = PrefetchingIter(train_data)

    # train
    mod.fit(train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='sgd',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)
Ejemplo n.º 15
0
def train_feature_distance_net(args, ctx, pretrained, pretrained_flow, epoch,
                               prefix, begin_epoch, end_epoch, lr, lr_step):
    # ==============prepare logger==============
    logger, final_output_path = create_logger(config.output_path, args.cfg,
                                              config.dataset.image_set)
    prefix = os.path.join(final_output_path, prefix)

    # ==============load symbol==============
    shutil.copy2(os.path.join(curr_path, 'symbols', config.symbol + '.py'),
                 final_output_path)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    if config.TRAIN.G_type == 0:
        sym = sym_instance.get_train_feature_distance_symbol(config)
    elif config.TRAIN.G_type == 1:
        sym = sym_instance.get_train_feature_distance_symbol_res(config)

    # ==============setup multi-gpu==============
    batch_size = len(ctx)
    input_batch_size = config.TRAIN.BATCH_IMAGES * batch_size

    # ==============print config==============
    pprint.pprint(config)
    logger.info('training config:{}\n'.format(pprint.pformat(config)))

    # ==============load dataset and prepare imdb for training==============
    image_sets = [iset for iset in config.dataset.image_set.split('+')]
    roidbs = [
        load_gt_roidb(config.dataset.dataset,
                      image_set,
                      config.dataset.root_path,
                      config.dataset.dataset_path,
                      flip=config.TRAIN.FLIP) for image_set in image_sets
    ]
    roidb = merge_roidb(roidbs)
    roidb = filter_roidb(roidb, config)
    train_iter = ImagenetVIDIter(roidb, input_batch_size, config,
                                 config.TRAIN.SHUFFLE, ctx)

    # infer max shape
    max_data_shape = [('data', (config.TRAIN.BATCH_IMAGES, 3,
                                max([v[0] for v in config.SCALES]),
                                max([v[1] for v in config.SCALES]))),
                      ('data_ref', (config.TRAIN.BATCH_IMAGES, 3,
                                    max([v[0] for v in config.SCALES]),
                                    max([v[1] for v in config.SCALES])))]
    print 'providing maximum shape', max_data_shape

    data_shape_dict = dict(train_iter.provide_data_single)
    pprint.pprint(data_shape_dict)
    sym_instance.infer_shape(data_shape_dict)

    # ==============init params==============
    if config.TRAIN.RESUME:
        print('continue training from ', begin_epoch)
        arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
    else:
        arg_params, aux_params = load_param(pretrained, epoch, convert=True)
        # arg_params_flow, aux_params_flow = load_param(pretrained_flow, epoch, convert=True)
        # arg_params.update(arg_params_flow)
        # aux_params.update(aux_params_flow)
        sym_instance.init_weight(config, arg_params, aux_params)

    # ==============check parameter shapes==============
    # sym_instance.check_parameter_shapes(arg_params, aux_params, data_shape_dict)

    # ==============create solver==============
    fixed_param_prefix = config.network.FIXED_PARAMS
    data_names = train_iter.data_name
    label_names = train_iter.label_name

    mod = MutableModule(
        sym,
        data_names=data_names,
        label_names=label_names,
        logger=logger,
        context=ctx,
        max_data_shapes=[max_data_shape for _ in range(batch_size)],
        max_label_shapes=None,
        fixed_param_prefix=fixed_param_prefix)

    if config.TRAIN.RESUME:
        mod._preload_opt_states = '%s-%04d.states' % (prefix, begin_epoch)

    # ==============optimizer==============
    optimizer_params = {
        'learning_rate': 0.00005,
    }

    if not isinstance(train_iter, PrefetchingIter):
        train_iter = PrefetchingIter(train_iter)

    batch_end_callback = callback.Speedometer(train_iter.batch_size,
                                              frequent=args.frequent)
    epoch_end_callback = [
        mx.callback.module_checkpoint(mod,
                                      prefix,
                                      period=1,
                                      save_optimizer_states=True),
        callback.do_checkpoint(prefix)
    ]

    feature_L2_loss = metric.FeatureL2LossMetric(config)
    eval_metrics = mx.metric.CompositeEvalMetric()
    eval_metrics.add(feature_L2_loss)

    mod.fit(train_iter,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=config.default.kvstore,
            optimizer='RMSprop',
            optimizer_params=optimizer_params,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch,
            initializer=mx.init.Normal(0.02),
            allow_missing=True)