Ejemplo n.º 1
0
# train and test variables beginning with an underscore are unprocessed.
_x_train, y_train = cos_linear_edge_data(n_data=n_train, sigma=0.1, seed=seed)
preprocessor = StandardPreprocessor()
x_train, _x_plot, x_plot = preprocessor.preprocess_create_x_train_x_plot(
    _x_train, test_ds=0.8)
y_ground_truth = ground_truth_cos_function(_x_plot)

layer_units = [50, 20] + [2]
layer_activations = ["relu"] * (len(layer_units) - 1) + ["linear"]

# %% codecell
y_lim = [-5, 5]
figsize = (10, 6)
fig, ax = plt.subplots(figsize=figsize)
plot_training_data(_x_train, y_train, fig=fig, ax=ax, y_lim=y_lim)
plot_ground_truth(_x_plot, y_ground_truth, fig=fig, ax=ax, alpha=0.2)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_ylim(y_lim)
fig.suptitle("Data with approximately linear edges", fontsize=15)
ax.tick_params(bottom=False, left=False, labelbottom=False, labelleft=False)
ax.legend()
fig.savefig(figure_dir.joinpath(f"data_{experiment_name}.pdf"),
            bbox_inches="tight")

# %%
# General training
epochs = 100
batch_size = n_train

# %% markdown
Ejemplo n.º 2
0
layer_activations = ["relu"] * (len(layer_units) - 1) + ["linear"]

weight_prior = tfd.Normal(0, 1)
bias_prior = weight_prior
a = 0.5
b = 0.01
_var_d = tfd.InverseGamma(a, b)
noise_scale_prior = tfd.TransformedDistribution(distribution=_var_d,
                                                bijector=tfp.bijectors.Invert(
                                                    tfp.bijectors.Square()))

# %% codecell
y_lim = [-5, 7]
fig, ax = plt.subplots(figsize=(8, 8))
plot_training_data(x_train, y_train, fig=fig, ax=ax, y_lim=y_lim)
plot_ground_truth(x_plot, y_ground_truth, fig=fig, ax=ax)
ax.legend()

# %%
initial_learning_rate = 0.05
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate, decay_steps=20, decay_rate=0.9, staircase=True)

net = MapDensityNetwork(
    input_shape=input_shape,
    layer_units=layer_units,
    layer_activations=layer_activations,
    weight_prior=weight_prior,
    bias_prior=bias_prior,
    n_train=n_train,
    learning_rate=0.01,