Ejemplo n.º 1
0
def test_embeddings():
    model = Siamese('dummy', input_shape=(6, 8, 3), embedding_size=3)

    model.make_embeddings('data_tiny/train',
                          'data_tiny/train.csv',
                          batch_size=1)
    emb = pd.read_pickle(os.path.join(model.cache_dir, 'embeddings.pkl'))
    print(emb)

    model.predict('data_tiny/train')
    pred = pd.read_pickle(os.path.join(model.cache_dir, 'predictions.pkl'))
    print(pred)
Ejemplo n.º 2
0
from core.siamese import Siamese


model = Siamese('shallow_mnist', input_shape=(28, 28, 3), embedding_size=64, strategy='batch_all')
model.load_weights('cache/cache-190213-131256/training/checkpoint-07.h5')
model.make_embeddings('data_mnist/train.csv', 'data_mnist/train', batch_size=200)
model.predict('data_mnist/train_subset')
model.make_csv('cache/cache-190213-131256/idx_to_whales_mapping.npy')
# model.load_embeddings('cache/cache-190205-070856/embeddings.pkl')
# model.load_predictions('cache/cache-190205-072026/predictions.pkl')
# model.make_kaggle_csv('cache/cache-190205-065005/idx_to_whales_mapping.npy')
# model.draw_tsne(model.predictions.values[:, 1:])





Ejemplo n.º 3
0
from core.siamese import Siamese

model = Siamese('mobilenet_like',
                input_shape=(672, 896, 3),
                embedding_size=128)
model.load_weights('trained/final_weights.h5')

#model.make_embeddings('data/train', 'data/train.csv', batch_size=5, meta_dir='data/meta')
model.load_embeddings('trained/embeddings.pkl')

model.predict('data/test', meta_dir='data/meta')
#model.load_predictions('trained/predictions.pkl')

model.make_kaggle_csv('data/meta/idx_to_whales_mapping.npy')
Ejemplo n.º 4
0
import sys
sys.path.insert(0, '../')

from core.siamese import Siamese

#model = Siamese(input_shape=(224, 224, 3), train_hidden_layers=False, n_classes=8, mode='classification')
model = Siamese(input_shape=(224, 224, 3),
                train_hidden_layers=True,
                n_classes=8,
                mode='arcface')
#model.load_weights('../trained/final_weights.h5')
model.load_weights('trained/final_weights.h5')
model.train('../data/train',
            'train.csv',
            meta_dir='../data/meta',
            epochs=70,
            batch_size=5,
            learning_rate=0.0001)
Ejemplo n.º 5
0
from core.siamese import Siamese

# using softmax loss classification
# model = Siamese(input_shape=(224, 224, 3), n_classes=5004)
# model.load_weights('trained/final_weights.h5')
# model.predict('data/test')
# model.make_kaggle_csv('data/meta/idx_to_whales_mapping.npy')

# using cos_angular embeddings
model = Siamese(input_shape=(224, 224, 3),
                n_classes=5004,
                mode='cosface',
                train=False)
model.load_weights('trained/final_weights.h5')

model.make_embeddings('data/train',
                      'data/train.csv',
                      batch_size=25,
                      meta_dir='data/meta')
#model.load_embeddings('trained/embeddings.pkl')

model.predict_using_embeddings('data/test', meta_dir='data/meta')
#model.load_predictions('trained/predictions.pkl')

model.make_kaggle_csv('data/meta/idx_to_whales_mapping.npy')
Ejemplo n.º 6
0
import sys
sys.path.insert(0, '../')

from core.siamese import Siamese

model = Siamese('mobilenet_like', input_shape=(672, 896, 3), embedding_size=128, train_hidden_layers=True)
#model.load_weights('../trained/final_weights.h5')
model.load_weights('trained/final_weights.h5')
model.train('../data/train', 'train.csv', meta_dir='../data/meta', epochs=40, batch_size=20, learning_rate=0.001, margin=1.0)
Ejemplo n.º 7
0
from core.siamese import Siamese

model = Siamese('mobilenet_like',
                input_shape=(672, 896, 3),
                embedding_size=128,
                strategy='batch_all')
# model.load_weights('cache/cache-190208-093118/training/checkpoint-03.h5')
# TODO mark pretrained mobilenet
model.load_weights('cache/cache-190208-093118/training/checkpoint-03.h5')
model.train('data/train.csv',
            'data/train',
            epochs=20,
            batch_size=32,
            learning_rate=0.0001,
            margin=2.0)
Ejemplo n.º 8
0
# inference to get cos angle embeddings

import sys
sys.path.insert(0, '../')

from core.siamese import Siamese

model = Siamese(input_shape=(224, 224, 3),
                n_classes=8,
                mode='arcface',
                train=False)
model.load_weights('trained/final_weights.h5')

model.make_embeddings(
    '../data/train',
    'train.csv',
    mappings_filename='../data/meta/whales_to_idx_mapping.npy',
    batch_size=25)
#model.load_embeddings('trained/embeddings.pkl')

model.predict_using_embeddings('../data/train', 'val.csv')
#model.predict_using_embeddings('../data/train', 'train.csv')
from core.siamese import Siamese


model = Siamese('resnet_like_33', input_shape=(384, 512, 3), embedding_size=128, strategy='batch_all')
model.load_weights('trained/checkpoint-05.h5')
model.load_embeddings('trained/embeddings.pkl')
model.load_predictions('trained/predictions.pkl')

model.make_kaggle_csv('trained/idx_to_whales_mapping.npy')


Ejemplo n.º 10
0
from core.siamese import Siamese

model = Siamese(input_shape=(224, 224, 3), n_classes=5004)
model.load_weights('data/new_whalizer.h5')

model.predict_new_whales('data/test', 'data/submission_no_new_whales.csv')