Ejemplo n.º 1
0
def get_phrg_production_rules_onsubgraphs(argmnts):
	args = argmnts
	gn = graph_name(args['orig'][0])
	f = "../datasets/" + gn + "*.p"
	files = glob(f)
	prod_rules = {}
	rules = []
	id = 0

	for f in files:
		Gprime = nx.read_gpickle(f)
		Gprime = reset_graph_nodes(Gprime)
		pp.pprint(Gprime.nodes())
		T = td.quickbb(Gprime)
		root = list(T)[0]
		T = td.make_rooted(T, root)
		T = phrg.binarize(T)
		root = list(T)[0]
		root, children = T
		# td.new_visit(T, G, prod_rules, TD)
		td.new_visit(T, Gprime, prod_rules)
		# Process(target=td.new_visit, args=(T, Gprime, prod_rules,)).start()
	if DBG: print
	if DBG: print "--------------------"
	if DBG: print "- Production Rules -"
	if DBG: print "--------------------"

	for k in prod_rules.iterkeys():
		if DBG: print k
		s = 0
		for d in prod_rules[k]:
			s += prod_rules[k][d]
		for d in prod_rules[k]:
			prod_rules[k][d] = float(prod_rules[k][d]) / float(s)  # normailization step to create probs not counts.
			if DBG: print '\t -> ', d, prod_rules[k][d]

	for k, v in prod_rules.iteritems():
		sid = 0
		for x in prod_rules[k]:
			rhs = re.findall("[^()]+", x)
			rules.append(("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x]))
			if DBG: print ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x])
			sid += 1
		id += 1

	df = pd.DataFrame(rules)
	# pp.pprint(df.values.tolist()); exit()

	df.to_csv('../ProdRules/{}.tsv.phrg.prs'.format(gn), header=False, index=False, sep="\t")
	if os.path.exists('../ProdRules/{}.tsv.phrg.prs'.format(gn)):
		print 'Saved', '../ProdRules/{}.tsv.phrg.prs'.format(gn)
	else:
		print "Trouble saving"


	'''
def get_sampled_gpickled_graphs(G):
	G.remove_edges_from(G.selfloop_edges())
	print ([x.number_of_nodes() for x in sorted(nx.connected_component_subgraphs(G), key=len)])
	# print ([x.number_of_nodes() for x in list(nx.connected_component_subgraphs(G))])
	giant_nodes = max(nx.connected_component_subgraphs(G), key=len)
	G = nx.subgraph(G, giant_nodes)
	num_nodes = G.number_of_nodes()
	graph_checks(G)

	prod_rules = {}
	K = 2
	n = 300

	j = 0
	if G.number_of_nodes() >500:
		for Gprime in rwr_sample(G, K, n):
			nx.write_gpickle(Gprime, "../datasets/{}_{}.p".format(gn,str(j)))
			T = quickbb(Gprime)
			root = list(T)[0]
			T = make_rooted(T, root)
			T = binarize(T)
			root = list(T)[0]
			root, children = T
			# td.new_visit(T, G, prod_rules, TD)
			new_visit(T, G, prod_rules)
			j += 1
	else:
		nx.write_gpickle (G, "../datasets/{}.p".format (gn))
		T = quickbb (G)
		root = list (T)[0]
		T = make_rooted (T, root)
		T = binarize (T)
		root = list (T)[0]
		root, children = T
		# td.new_visit(T, G, prod_rules, TD)
		new_visit (T, G, prod_rules)
	## 
	return prod_rules
Ejemplo n.º 3
0
def get_hrg_production_rules(edgelist_data_frame,
                             graph_name,
                             tw=False,
                             trials=10,
                             n_subg=2,
                             n_nodes=300,
                             nstats=False):
    from core.growing import derive_prules_from

    t_start = time.time()
    df = edgelist_data_frame
    if df.shape[1] == 4:
        G = nx.from_pandas_dataframe(df, 'src', 'trg',
                                     edge_attr=True)  # whole graph
    elif df.shape[1] == 3:
        G = nx.from_pandas_dataframe(df, 'src', 'trg', ['ts'])  # whole graph
    else:
        G = nx.from_pandas_dataframe(df, 'src', 'trg')
    G.name = graph_name
    print "==> read in graph took: {} seconds".format(time.time() - t_start)

    G.remove_edges_from(G.selfloop_edges())
    giant_nodes = max(nx.connected_component_subgraphs(G), key=len)
    G = nx.subgraph(G, giant_nodes)

    num_nodes = G.number_of_nodes()

    phrg.graph_checks(G)

    if DBG: print
    if DBG: print "--------------------"
    if not DBG: print "-Tree Decomposition-"
    if DBG: print "--------------------"

    prod_rules = {}
    K = n_subg
    n = n_nodes
    if num_nodes >= 500:
        print 'Grande'
        t_start = time.time()
        for Gprime in gs.rwr_sample(G, K, n):
            T = td.quickbb(Gprime)
            root = list(T)[0]
            T = td.make_rooted(T, root)
            T = phrg.binarize(T)
            root = list(T)[0]
            root, children = T
            # td.new_visit(T, G, prod_rules, TD)
            td.new_visit(T, G, prod_rules)
            Process(target=td.new_visit, args=(
                T,
                G,
                prod_rules,
            )).start()
    else:
        T = td.quickbb(G)
        root = list(T)[0]
        T = td.make_rooted(T, root)
        T = phrg.binarize(T)
        root = list(T)[0]
        root, children = T
        # td.new_visit(T, G, prod_rules, TD)
        td.new_visit(T, G, prod_rules)


#		print_treewidth(T)
#		exit()

    if DBG: print
    if DBG: print "--------------------"
    if DBG: print "- Production Rules -"
    if DBG: print "--------------------"

    for k in prod_rules.iterkeys():
        if DBG: print k
        s = 0
        for d in prod_rules[k]:
            s += prod_rules[k][d]
        for d in prod_rules[k]:
            prod_rules[k][d] = float(prod_rules[k][d]) / float(
                s)  # normailization step to create probs not counts.
            if DBG: print '\t -> ', d, prod_rules[k][d]

    rules = []
    id = 0
    for k, v in prod_rules.iteritems():
        sid = 0
        for x in prod_rules[k]:
            rhs = re.findall("[^()]+", x)
            rules.append(
                ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs,
                 prod_rules[k][x]))
            if DBG:
                print("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0],
                      rhs, prod_rules[k][x])
            sid += 1
        id += 1

    df = pd.DataFrame(rules)
    '''print "++++++++++"
	df.to_csv('ProdRules/{}_prs.tsv'.format(G.name), header=False, index=False, sep="\t")
	if os.path.exists('ProdRules/{}_prs.tsv'.format(G.name)): 
		print 'Saved', 'ProdRules/{}_prs.tsv'.format(G.name)
	else:
		print "Trouble saving"
	print "-----------"
	print [type(x) for x in rules[0]] '''
    '''
	Graph Generation of Synthetic Graphs
	Grow graphs usigng the union of rules from sampled sugbgraphs to predict the target order of the 
	original graph
	'''
    hStars = grow_exact_size_hrg_graphs_from_prod_rules(
        rules, graph_name, G.number_of_nodes(), trials)
    print '... hStart graphs:', len(hStars)

    if not os.path.exists(r"Results/"): os.makedirs(r"Results/")

    with open(r"Results/{}_hstars.pickle".format(graph_name),
              "wb") as output_file:
        cPickle.dump(hStars, output_file)
    if os.path.exists(r"Results/{}_hstars.pickle".format(graph_name)):
        print "File saved"
    '''if nstats:
Ejemplo n.º 4
0
def dimacs_td_ct_fast(oriG, tdfname):
    """ tree decomp to clique-tree
	parameters:
		orig:			filepath to orig (input) graph in edgelist
		tdfname:	filepath to tree decomposition from INDDGO
		synthg:		when the input graph is a syth (orig) graph
	Todo:
		currently not handling sythg in this version of dimacs_td_ct
	"""
    G = oriG
    if G is None: return (1)
    prod_rules = {}

    t_basename = os.path.basename(tdfname)
    out_tdfname = os.path.basename(t_basename) + ".prs"
    if os.path.exists("../ProdRules/" + out_tdfname):
        # print "==> exists:", out_tdfname
        return out_tdfname
    if 0: print "../ProdRules/" + out_tdfname, tdfname

    with open(tdfname, 'r') as f:  # read tree decomp from inddgo
        lines = f.readlines()
        lines = [x.rstrip('\r\n') for x in lines]

    cbags = {}
    bags = [x.split() for x in lines if x.startswith('B')]

    for b in bags:
        cbags[int(b[1])] = [int(x) for x in b[3:]]  # what to do with bag size?

    edges = [x.split()[1:] for x in lines if x.startswith('e')]
    edges = [[int(k) for k in x] for x in edges]

    tree = defaultdict(set)
    for s, t in edges:
        tree[frozenset(cbags[s])].add(frozenset(cbags[t]))
        if DEBUG: print '.. # of keys in `tree`:', len(tree.keys())

    root = list(tree)[0]
    root = frozenset(cbags[1])
    T = td.make_rooted(tree, root)
    # nfld.unfold_2wide_tuple(T) # lets me display the tree's frozen sets

    T = phrg.binarize(T)
    root = list(T)[0]
    root, children = T
    # td.new_visit(T, G, prod_rules, TD)
    # print ">>",len(T)

    td.new_visit(T, G, prod_rules)

    if 0: print "--------------------"
    if 0: print "- Production Rules -"
    if 0: print "--------------------"

    for k in prod_rules.iterkeys():
        if DEBUG: print k
        s = 0
        for d in prod_rules[k]:
            s += prod_rules[k][d]
        for d in prod_rules[k]:
            prod_rules[k][d] = float(prod_rules[k][d]) / float(
                s)  # normailization step to create probs not counts.
            if DEBUG: print '\t -> ', d, prod_rules[k][d]

    rules = []
    id = 0
    for k, v in prod_rules.iteritems():
        sid = 0
        for x in prod_rules[k]:
            rhs = re.findall("[^()]+", x)
            rules.append(
                ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs,
                 prod_rules[k][x]))
            if 0:
                print("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0],
                      rhs, prod_rules[k][x])
            sid += 1
        id += 1

    # print rules
    if 0: print "--------------------"
    if 0: print '- P. Rules', len(rules)
    if 0: print "--------------------"

    # ToDo.
    # Let's save these rules to file or print proper
    write_prod_rules_to_tsv(rules, out_tdfname)

    # g = pcfg.Grammar('S')
    # for (id, lhs, rhs, prob) in rules:
    #	g.add_rule(pcfg.Rule(id, lhs, rhs, prob))

    # Synthetic Graphs
    #	hStars = grow_exact_size_hrg_graphs_from_prod_rules(rules, graph_name, G.number_of_nodes(), 20)
    #	# metricx = ['degree', 'hops', 'clust', 'assort', 'kcore', 'gcd'] # 'eigen'
    #	metricx = ['gcd','avgdeg']
    #	metrics.network_properties([G], metricx, hStars, name=graph_name, out_tsv=True)

    return out_tdfname
Ejemplo n.º 5
0
def get_phrg_production_rules (argmnts):
	args = argmnts

	t_start = time.time()
	df = tdf.Pandas_DataFrame_From_Edgelist(args['orig'])[0]
	if df.shape[1] == 4:
		G = nx.from_pandas_dataframe(df, 'src', 'trg', edge_attr=True)	# whole graph
	elif df.shape[1] == 3:
		G = nx.from_pandas_dataframe(df, 'src', 'trg', ['ts'])	# whole graph
	else:
		G = nx.from_pandas_dataframe(df, 'src', 'trg')
	G.name = graph_name(args['orig'][0])
	print "==> read in graph took: {} seconds".format(time.time() - t_start)
	G.remove_edges_from(G.selfloop_edges())
	giant_nodes = max(nx.connected_component_subgraphs(G), key=len)
	G = nx.subgraph(G, giant_nodes)

	num_nodes = G.number_of_nodes()

	phrg.graph_checks(G)

	if DBG: print
	if DBG: print "--------------------"
	if not DBG: print "-Tree Decomposition-"
	if DBG: print "--------------------"

	prod_rules = {}
	K = 2
	n = 300
	if num_nodes >= 500:
		print 'Grande'
		t_start = time.time()
		for Gprime in gs.rwr_sample(G, K, n):
			T = td.quickbb(Gprime)
			root = list(T)[0]
			T = td.make_rooted(T, root)
			T = phrg.binarize(T)
			root = list(T)[0]
			root, children = T
			# td.new_visit(T, G, prod_rules, TD)
			td.new_visit(T, G, prod_rules)
			Process(target=td.new_visit, args=(T, G, prod_rules,)).start()
	else:
		T = td.quickbb(G)
		root = list(T)[0]
		T = td.make_rooted(T, root)
		T = phrg.binarize(T)
		root = list(T)[0]
		root, children = T
		# td.new_visit(T, G, prod_rules, TD)
		td.new_visit(T, G, prod_rules)

		# print_treewidth(T) # TODO: needs to be fixed
		# exit()

	if DBG: print
	if DBG: print "--------------------"
	if DBG: print "- Production Rules -"
	if DBG: print "--------------------"

	for k in prod_rules.iterkeys():
		if DBG: print k
		s = 0
		for d in prod_rules[k]:
			s += prod_rules[k][d]
		for d in prod_rules[k]:
			prod_rules[k][d] = float(prod_rules[k][d]) / float(
				s)	# normailization step to create probs not counts.
			if DBG: print '\t -> ', d, prod_rules[k][d]

	rules = []
	id = 0
	for k, v in prod_rules.iteritems():
		sid = 0
		for x in prod_rules[k]:
			rhs = re.findall("[^()]+", x)
			rules.append(("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x]))
			if DBG: print ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs, prod_rules[k][x])
			sid += 1
		id += 1

	df = pd.DataFrame(rules)
	# pp.pprint(df.values.tolist()); exit()

	df.to_csv('../ProdRules/{}.tsv.phrg.prs'.format(G.name), header=False, index=False, sep="\t")
	if os.path.exists('../ProdRules/{}.tsv.phrg.prs'.format(G.name)):
		print 'Saved', '../ProdRules/{}.tsv.phrg.prs'.format(G.name)
	else:
		print "Trouble saving"
	print "-----------"
	print [type(x) for x in rules[0]]

	'''
Ejemplo n.º 6
0
def get_hrg_production_rules_given(G,
                                   tw=False,
                                   n_subg=2,
                                   n_nodes=300,
                                   nstats=False):
    G.remove_edges_from(G.selfloop_edges())
    giant_nodes = max(nx.connected_component_subgraphs(G), key=len)
    G = nx.subgraph(G, giant_nodes)

    num_nodes = G.number_of_nodes()

    phrg.graph_checks(G)

    if DBG: print
    if DBG: print "--------------------"
    if not DBG: print "-Tree Decomposition-"
    if DBG: print "--------------------"

    prod_rules = {}
    K = n_subg
    n = n_nodes
    if num_nodes >= 500:
        print 'Grande'
        t_start = time.time()
        for Gprime in gs.rwr_sample(G, K, n):
            T = td.quickbb(Gprime)
            root = list(T)[0]
            T = td.make_rooted(T, root)
            T = phrg.binarize(T)
            root = list(T)[0]
            root, children = T
            # td.new_visit(T, G, prod_rules, TD)
            td.new_visit(T, G, prod_rules)
            Process(target=td.new_visit, args=(
                T,
                G,
                prod_rules,
            )).start()
    else:
        T = td.quickbb(G)
        root = list(T)[0]
        T = td.make_rooted(T, root)
        T = phrg.binarize(T)
        root = list(T)[0]
        root, children = T
        # td.new_visit(T, G, prod_rules, TD)
        td.new_visit(T, G, prod_rules)

        # print_treewidth(T)
        exit()

    if DBG: print
    if DBG: print "--------------------"
    if DBG: print "- Production Rules -"
    if DBG: print "--------------------"

    for k in prod_rules.iterkeys():
        if DBG: print k
        s = 0
        for d in prod_rules[k]:
            s += prod_rules[k][d]
        for d in prod_rules[k]:
            prod_rules[k][d] = float(prod_rules[k][d]) / float(
                s)  # normailization step to create probs not counts.
            if DBG: print '\t -> ', d, prod_rules[k][d]

    rules = []
    id = 0
    for k, v in prod_rules.iteritems():
        sid = 0
        for x in prod_rules[k]:
            rhs = re.findall("[^()]+", x)
            rules.append(
                ("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0], rhs,
                 prod_rules[k][x]))
            if DBG:
                print("r%d.%d" % (id, sid), "%s" % re.findall("[^()]+", k)[0],
                      rhs, prod_rules[k][x])
            sid += 1
        id += 1

    df = pd.DataFrame(rules)
    '''
	Graph Generation of Synthetic Graphs
	Grow graphs usigng the union of rules from sampled sugbgraphs to predict the target order of the 
	original graph
	exact change to fixed 
	'''
    # hStars = grow_exact_size_hrg_graphs_from_prod_rules(rules, graph_name, G.number_of_nodes(), 10)
    hStars = grow_hrg_graphs_with_infinity(rules,
                                           graph_name,
                                           G.number_of_nodes(),
                                           10,
                                           rnbr=1)
    print '... hStart graphs:', len(hStars)
    d = {graph_name + "_hstars": hStars}
    with open(r"Results/{}_hstars.pickle".format(graph_name),
              "wb") as output_file:
        cPickle.dump(d, output_file)
    if os.path.exists(r"Results/{}_hstars.pickle".format(graph_name)):
        print "File saved"
    '''if nstats: