Ejemplo n.º 1
0
 def parameters(self, Cj, Lj, Cc, Cr, Lr):
     circuit = core.Network([
         core.C(0, 1, Cj),
         core.J(0, 1, Lj),
         core.C(1, 2, Cc),
         core.C(0, 2, Cr),
         core.L(0, 2, Lr)
     ])
     return circuit.f_k_A_chi()
Ejemplo n.º 2
0
 def parameters(self, C, L):
     circuit = core.Network([
         core.C(0, 2, C),
         core.C(1, 3, C),
         core.J(0, 1, L),
         core.J(1, 2, L),
         core.J(2, 3, L),
         core.J(3, 0, L)
     ])
     return circuit.f_k_A_chi()
Ejemplo n.º 3
0
 def test_sweeping_LJ_in_fkAchi(self):
     cir = core.Network([
         core.C(0, 1, 100e-15),
         core.J(0, 1, 'L_J'),
         core.C(1, 2, 1e-15),
         core.C(2, 0, 100e-15),
         core.L(2, 0, 10e-9),
         core.R(2, 0, 1e6)
     ])
     [cir.f_k_A_chi(L_J=x) for x in [1e-9, 2e-9]]
Ejemplo n.º 4
0
 def test_double_series_capacitor(self):
     C = 100e-15
     Lj = 10e-9
     circuit = core.Network(
         [core.C(0, 1, C * 2),
          core.C(1, 2, C * 2),
          core.J(0, 2, Lj)])
     f, k, A, chi = circuit.f_k_A_chi()
     self.assertArrayRelativelyClose(
         [e**2 / 2. / C / h, 1 / (np.sqrt(C * Lj) * 2. * pi)], [A[0], f[0]])
Ejemplo n.º 5
0
 def test_LC_double_series_L_double_series_C(self):
     C = 1e-8
     L = 3
     circuit = core.Network([
         core.C(0, 1, C * 2),
         core.C(1, 2, C * 2),
         core.L(2, 3, L / 2),
         core.L(3, 0, L / 2)
     ])
     f, k, A, chi = circuit.f_k_A_chi()
     f_expected = 1 / np.sqrt(L * C) / 2 / np.pi
     self.assertRelativelyClose(f_expected, f)
Ejemplo n.º 6
0
 def test_sweeping_CJ_array_in_zpf(self):
     C_comp = core.C(0, 1, 'C_J')
     cir = core.Network([
         C_comp,
         core.J(0, 1, 10e-9),
         core.C(1, 2, 1e-15),
         core.C(2, 0, 100e-15),
         core.L(2, 0, 10e-9),
         core.R(2, 0, 1e6)
     ])
     self.assertRelativelyClose(
         C_comp.zpf(mode=1, quantity='charge', C_J=1.5e-9),
         C_comp.zpf(mode=1, quantity='charge', C_J=[1e-9, 1.5e-9, 3e-9])[1])
Ejemplo n.º 7
0
 def test_open_or_series_check(self):
     with self.assertRaises(ValueError):
         net = core._Network([
             core.R(0, 1, 'Z'),
             core.C(1, 2, 'Z'),
             core.J(2, 3, 'Z'),
         ])
Ejemplo n.º 8
0
 def test_connectivity_check_single_element_not_connected(self):
     with self.assertRaises(ValueError):
         net = core._Network([
             core.R(0, 1, 'Z'),
             core.C(1, 2, 'Z'),
             core.J(3, 4, 'Z'),
         ])
Ejemplo n.º 9
0
 def test_error_when_trying_to_plot_from_Network_show_normal_modes(self):
     circuit = core.Network([
         core.C(0,1,'C'),
         core.J(0,1,'Lj')
     ])
     with self.assertRaises(TypeError):
         circuit.show_normal_mode()
Ejemplo n.º 10
0
 def test_connectivity_check_subcircuit_not_connected(self):
     with self.assertRaises(ValueError):
         net = core._Network([
             core.R(0, 1, "Z"),
             core.C(1, 2, "Z"),
             core.J(3, 4, "Z"),
             core.J(3, 4, "Z"),
             core.J(4, 5, "Z"),
         ])
Ejemplo n.º 11
0
 def test_q_zpf(self):
     Cj = 100e-15
     Lj = 10e-9
     junction = core.J(0, 1, Lj)
     circuit = core.Network([core.C(0, 1, Cj), junction, core.R(0, 1, 1e6)])
     Z = np.sqrt(Lj / Cj)
     q_zpf = np.sqrt(hbar / Z / 2)
     self.assertRelativelyClose(
         q_zpf / e, np.absolute(junction.zpf(mode=0, quantity='charge')))
Ejemplo n.º 12
0
 def test_phi_zpf(self):
     Cj = 100e-15
     Lj = 10e-9
     junction = core.J(0, 1, Lj)
     circuit = core.Network([core.C(0, 1, Cj), junction, core.R(0, 1, 1e6)])
     phi_0 = hbar / 2 / e
     Z = np.sqrt(Lj / Cj)
     phi_zpf = np.sqrt(hbar * Z / 2)
     self.assertRelativelyClose(phi_zpf / phi_0,
                                junction.zpf(mode=0, quantity='flux'))
Ejemplo n.º 13
0
 def test_anharmonicity_using_hamiltonian(self):
     Cj = 1e-10
     circuit = core.Network([core.C(0, 1, Cj), core.J(0, 1, 10e-9)])
     H = circuit.hamiltonian(modes=[0], taylor=4, excitations=[10])
     ee = H.eigenenergies()
     A = np.absolute((ee[1] - ee[0]) - (ee[2] - ee[1]))
     # Due to higher order terms, the mismatch with e**2/2/Cj/h is
     # (193702.3+0j) != (194712.7+0j)
     A_expected = 194712.7
     self.assertRelativelyClose(A_expected, A)
Ejemplo n.º 14
0
    def revaluing_labelled_valued_component_twice(self):
        '''
        Adressing last error appearing in issue #83
        '''
        cir = core.Network(
            [core.L(0, 1, 1),
             core.C(0, 1, 1),
             core.R(0, 1, 'R', 1)])
        try:
            cir.loss_rates(R=1)
        except Exception:
            pass

        with self.assertRaises(ValueError):
            cir.loss_rates(R=1)
Ejemplo n.º 15
0
 def parameters(self, R, L, C):
     circuit = core.Network(
         [core.C(0, 1, C),
          core.L(1, 2, L),
          core.R(0, 2, R)])
     return circuit.f_k_A_chi()
Ejemplo n.º 16
0
 def parameters(self, C, Lj):
     circuit = core.Network([core.C(0, 1, C), core.J(0, 1, Lj)])
     return circuit.f_k_A_chi()
Ejemplo n.º 17
0
 def test_error_when_trying_to_plot_from_Network_show(self):
     circuit = core.Network([core.C(0, 1, "C"), core.J(0, 1, "Lj")])
     with self.assertRaises(TypeError):
         circuit.show()