msg = "model evidence: " + str(D['lnZ']) + \ " +/- " + str(D['dlnZ']) cc.WP(msg, D['wrt_file']) cp.plot_hist(flattrace, D['pname'], D['pname_plt'], param_true=D['param_true'], pltname=D['outname']) cc.coef_summary(flattrace, D['pname'], D['outname']) bounds = ((.25, 2.1), (-.8, 2.2), (0, .6)) cp.plot_cov(flattrace, D['pname_plt'], param_true=D['param_true'], bounds=bounds, figsize=[5.5, 5.5], pltname=D['outname']) cp.plot_prediction(flattrace, D['name_list'], D['Tt'], D['At'], D['It'], feval, D, colorL=['k', 'r'], param_true=D['param_true'], ylim=(1.1, 2.2), pltname=D['outname'])
WP(msg, D['wrt_file']) msg = "model evidence: " + str(D['lnZ']) + \ " +/- " + str(D['dlnZ']) cc.WP(msg, D['wrt_file']) cc.coef_summary(flattrace, D['pname'], D['wrt_file']) nxtprior = np.zeros((2, D['nparam'])) nxtprior[0, :] = np.mean(flattrace, 0) - 5*np.std(flattrace, 0) nxtprior[1, :] = 10*np.std(flattrace, 0) np.savetxt(D['outname'] + '_prior.csv', nxtprior) cp.plot_hist(flattrace, D['pname'], D['pname_plt'], pltname=D['outname']) cp.plot_cov(flattrace, D['pname_plt'], pltname=D['outname'], tight_layout=False) """configure model prediction plots for Cp, H, S and G""" name_list_l = [D['name_list_Cp'], D['name_list_H'], None, None] Tt_l = [D['Tt_Cp'], D['Tt_H'], None, None] At_l = [D['At_Cp'], D['At_H'], None, None] Etr_l = [D['Etr_Cp'], D['Etr_H'], None, None] It_l = [D['It_Cp'], D['It_H'], None, None] pltper = [1, 1, 0, 0] xlim = [[(1800, 2600)], [(1800, 2600)], None, None] ylim = [[(24, 40)], [(47000, 85000)], None, None] on = D['outname'] pltname = [[on + 'Cp', on + 'Cp_close', on + 'Cp_vclose'], [on + 'H'], [on + 'S'], [on + 'G']]
msg = "model evidence: " + str(D['lnZ']) + \ " +/- " + str(D['dlnZ']) cc.WP(msg, D['wrt_file']) cp.plot_hist(flattrace, D['pname'], D['pname_plt'], param_true=D['param_true'], pltname=D['outname']) cc.coef_summary(flattrace, D['pname'], D['outname']) cp.plot_cov(flattrace[:, :3], D['pname_plt'][3:], param_true=D['param_true'][3:], figsize=[5.5, 5.5], sciform=True, pltname=D['outname'] + '_Cp') cp.plot_cov(flattrace[:, 3:], D['pname_plt'][3:], param_true=D['param_true'][3:], figsize=[5.5, 5.5], sciform=True, pltname=D['outname'] + '_H') cp.plot_prediction(flattrace, D['name_list'], D['Tt_Cp'], D['At_Cp'], D['It_Cp'],
msg = "model evidence: " + str(D['lnZ']) + \ " +/- " + str(D['dlnZ']) cc.WP(msg, D['wrt_file']) cp.plot_hist(flattrace, D['pname'], D['pname_plt'], param_true=D['param_true'], pltname=D['outname']) cc.coef_summary(flattrace, D['pname'], D['outname']) cp.plot_cov(flattrace, D['pname_plt'], param_true=D['param_true'], figsize=[5.5, 5.5], pltname=D['outname'], sciform=True) # rescale the data errors by the means of the hyperparameters hyp_m = np.mean(flattrace[:, D['order'] + 1:], 0) hyp_m_V = np.zeros(D['Et'].shape) for ii in range(len(hyp_m)): hyp_m_V[D['It'] == ii] = hyp_m[ii] cp.plot_prediction(flattrace, D['name_list'], D['Tt'], D['At'], D['It'], feval,