Ejemplo n.º 1
0
def test_histogram_plot_parse_column():
    plat = platform.system()
    if plat == 'Darwin':
        plt_name = '../data/test/hist1.eps'
    else:
        plt_name = r'..\data\test\hist1.eps'
    np.random.seed(19680801)
    x = np.random.normal(15.0, 3.0, 1000)
    y = np.random.normal(20.0, 3.0, 1000)
    data = [x, y]
    labels = ['one', 'two']
    one = np.repeat('one', len(x))
    two = np.repeat('two', len(x))
    x = np.hstack((x, y))
    y = np.hstack((one, two))

    dictionary = {'data': x, 'type': y}
    df = pd.DataFrame(dictionary)
    obj = MatPlotDataFrame(df)
    obj.histogram_plot_parse_column('data',
                                    'type',
                                    labels,
                                    x_label='x-axis',
                                    y_label='y-axis',
                                    shading=[0.9, 0.4],
                                    save=True,
                                    plot_name=plt_name)
    assert os.path.isfile(plt_name)
    if os.path.isfile(plt_name):
        os.remove(plt_name)
Ejemplo n.º 2
0
def test_matplot_line_plot_column():
    plat = platform.system()
    if plat == 'Darwin':
        plt_name = '../data/test/line2.eps'
    else:
        plt_name = r'..\data\test\line2.eps'
    length = 20
    x = np.linspace(0, 20, num=20)
    linear = x
    squared = x**2.0

    # create dataframe
    dictionary = {'x': x, 'linear': linear, 'squared': squared}
    df = pd.DataFrame(dictionary)

    # plot data
    obj = MatPlotDataFrame(df)
    x_headers = ['x', 'x']
    y_headers = ['linear', 'squared']
    obj.line_plot_columns(x_headers,
                          y_headers,
                          y_headers,
                          x_label='x-axis',
                          y_label='y-axis',
                          title='Test',
                          style_name='default',
                          line_colors=['red', 'green'],
                          fill_alpha=0.7,
                          label_pos='upper left',
                          grid=True,
                          save=True,
                          plot_name=plt_name)
    assert os.path.isfile(plt_name)
    if os.path.isfile(plt_name):
        os.remove(plt_name)
Ejemplo n.º 3
0
def test_matplot_timedate_plot_parse_column():
    plat = platform.system()
    if plat == 'Darwin':
        plt_name = '../data/test/time1.eps'
    else:
        plt_name = r'..\data\test\time.eps'
    length = 6
    dates = pd.date_range(start=pd.to_datetime('2016-09-24'),
                          periods=length,
                          freq='y')
    x = np.linspace(0, length, num=length)
    linear = x
    squared = x**2.0
    lin = np.repeat('linear', length)
    sq = np.repeat('squared', length)

    # Combine arrays into one
    x = np.hstack((dates, dates))
    y = np.hstack((linear, squared))
    power = np.hstack((lin, sq))

    # Create dataframe
    dictionary = {'dates': x, 'y': y, 'power': power}
    df = pd.DataFrame(dictionary)
    # Plot data
    obj = MatPlotDataFrame(df)

    parsing_header = 'power'
    column_values = ['linear', 'squared']
    obj.timedate_plot_parse_column('dates',
                                   'y',
                                   parsing_header,
                                   column_values,
                                   x_label='x-axis',
                                   y_label='y-axis',
                                   title='Test',
                                   style_name='default',
                                   line_colors=['red', 'green'],
                                   fill_alpha=0.7,
                                   label_pos='upper left',
                                   grid=True,
                                   save=True,
                                   plot_name=plt_name)
    assert os.path.isfile(plt_name)
    if os.path.isfile(plt_name):
        os.remove(plt_name)
Ejemplo n.º 4
0
def test_matplot_scatter_plot_parse_column():
    plat = platform.system()
    if plat == 'Darwin':
        plt_name = '../data/test/scatter1.eps'
    else:
        plt_name = r'..\data\test\scatter1.eps'
    length = 20
    x = np.linspace(0, 20, num=20)
    linear = x
    squared = x**2.0
    lin = np.repeat('linear', 20)
    sq = np.repeat('squared', 20)

    # Combine arrays into one
    x = np.hstack((x, x))
    y = np.hstack((linear, squared))
    power = np.hstack((lin, sq))

    # Create dataframe
    dictionary = {'x': x, 'y': y, 'power': power}
    df = pd.DataFrame(dictionary)

    # Plot data
    obj = MatPlotDataFrame(df)

    parsing_header = 'power'
    column_values = ['linear', 'squared']
    obj.scatter_plot_parse_column('x',
                                  'y',
                                  parsing_header,
                                  column_values,
                                  x_label='x-axis',
                                  y_label='y-axis',
                                  title='Test',
                                  style_name='default',
                                  marker_colors=['red', 'green'],
                                  fill_alpha=0.7,
                                  marker_style=['o', '^'],
                                  label_pos='upper left',
                                  grid=True,
                                  save=True,
                                  plot_name=plt_name)
    assert os.path.isfile(plt_name)
    if os.path.isfile(plt_name):
        os.remove(plt_name)
Ejemplo n.º 5
0
def test_histogram_plot_columns():
    plat = platform.system()
    if plat == 'Darwin':
        plt_name = '../data/test/hist2.eps'
    else:
        plt_name = r'..\data\test\hist2.eps'
    np.random.seed(19680801)
    x = np.random.normal(15.0, 3.0, 1000)
    y = np.random.normal(20.0, 3.0, 1000)
    data = [x, y]
    labels = ['one', 'two']
    dictionary = {'x': x, 'y': y}
    df = pd.DataFrame(dictionary)
    obj = MatPlotDataFrame(df)
    obj.histogram_plot_columns(['x', 'y'],
                               labels,
                               x_label='x-axis',
                               y_label='y-axis',
                               shading=[0.9, 0.4],
                               save=True,
                               plot_name=plt_name)
    assert os.path.isfile(plt_name)
    if os.path.isfile(plt_name):
        os.remove(plt_name)
Ejemplo n.º 6
0
def test_matplot_timedate_plot_parse_column():
    plat = platform.system()
    if plat == 'Darwin':
        plt_name = '../data/test/line1.eps'
    else:
        plt_name = r'..\data\test\line.eps'
    length = 6
    dates = pd.date_range(start=pd.to_datetime('2016-09-24'),
                          periods=length,
                          freq='y')
    x = np.linspace(0, length, num=length)
    linear = x
    squared = x**2.0

    dictionary = {'dates': dates, 'squared': squared, 'linear': linear}
    df = pd.DataFrame(dictionary)
    # Plot data
    obj = MatPlotDataFrame(df)
    time_axis = ['dates', 'dates']
    y_axis = ['linear', 'squared']
    obj.timedate_plot_columns(time_axis,
                              y_axis,
                              y_axis,
                              x_label='x-axis',
                              y_label='y-axis',
                              title='Test',
                              style_name='default',
                              line_colors=['red', 'green'],
                              fill_alpha=0.7,
                              label_pos='upper left',
                              grid=True,
                              save=True,
                              plot_name=plt_name)
    assert os.path.isfile(plt_name)
    if os.path.isfile(plt_name):
        os.remove(plt_name)