Ejemplo n.º 1
0
 def test_ROI_binary_overlap(self):
     roi1 = np.zeros((10, 10))
     roi1[4:8, 3:7] = 1
     roi1 = ia.ROI(roi1)
     roi2 = np.zeros((10, 10))
     roi2[5:9, 5:8] = 1
     roi2 = ia.ROI(roi2)
     assert(roi1.binary_overlap(roi2) == 6)
Ejemplo n.º 2
0
 def test_ROI(self):
     a = np.zeros((10, 10))
     a[5:7, 3:6] = 1
     a[8:9, 7:10] = np.nan
     roi = ia.ROI(a)
     # plt.imshow(roi.get_binary_mask(),interpolation='nearest')
     assert (list(roi.get_center()) == [5.5, 4.])
Ejemplo n.º 3
0
 def test_ROI_getBinaryTrace(self):
     mov = np.random.rand(5, 4, 4)
     mask = np.zeros((4, 4))
     mask[2, 3] = 1
     trace1 = mov[:, 2, 3]
     roi = ia.ROI(mask)
     trace2 = roi.get_binary_trace(mov)
     assert (np.array_equal(trace1, trace2))
Ejemplo n.º 4
0
 def test_plot_ROIs(self):
     aa = np.zeros((50, 50));
     aa[15:20, 30:35] = np.random.rand(5, 5)
     roi1 = ia.ROI(aa)
     _ = roi1.plot_binary_mask_border();
     _ = roi1.plot_binary_mask()
     roi2 = ia.WeightedROI(aa)
     _ = roi2.plot_binary_mask_border();
     _ = roi2.plot_binary_mask();
     _ = roi2.plot_weighted_mask()
def get_traces(params):
    t0 = time.time()

    chunk_ind, chunk_start, chunk_end, nwb_path, data_path, curr_folder, center_array, surround_array = params

    nwb_f = h5py.File(nwb_path, 'r')
    print('\nstart analyzing chunk: {}'.format(chunk_ind))
    curr_mov = nwb_f[data_path][chunk_start:chunk_end]
    nwb_f.close()

    # print 'extracting traces'
    curr_traces_center = np.empty((center_array.shape[0], curr_mov.shape[0]),
                                  dtype=np.float32)
    curr_traces_surround = np.empty((center_array.shape[0], curr_mov.shape[0]),
                                    dtype=np.float32)
    for i in range(center_array.shape[0]):
        curr_center = ia.WeightedROI(center_array[i])
        curr_surround = ia.ROI(surround_array[i])
        curr_traces_center[i, :] = curr_center.get_weighted_trace_pixelwise(
            curr_mov)

        # scale surround trace to be similar as center trace
        mean_center_weight = curr_center.get_mean_weight()
        curr_traces_surround[i, :] = curr_surround.get_binary_trace_pixelwise(
            curr_mov) * mean_center_weight

    # print 'saveing chunk {} ...'.format(chunk_ind)
    chunk_folder = os.path.join(curr_folder, 'chunks')
    if not os.path.isdir(chunk_folder):
        os.mkdir(chunk_folder)
    chunk_f = h5py.File(
        os.path.join(chunk_folder,
                     'chunk_temp_' + ft.int2str(chunk_ind, 4) + '.hdf5'))
    chunk_f['traces_center'] = curr_traces_center
    chunk_f['traces_surround'] = curr_traces_surround
    chunk_f.close()

    print('\n\t{:06d} seconds: chunk: {}; demixing finished.'.format(
        int(time.time() - t0), chunk_ind))

    return None
Ejemplo n.º 6
0
def add_rois_and_traces(
        data_folder,
        nwb_f,
        plane_n,
        imaging_depth,
        mov_path='/processing/motion_correction/MotionCorrection'):

    mov_grp = nwb_f.file_pointer[mov_path + '/' + plane_n + '/corrected']

    data_f = h5py.File(os.path.join(data_folder, 'rois_and_traces.hdf5'), 'r')
    mask_arr_c = data_f['masks_center'].value
    mask_arr_s = data_f['masks_surround'].value
    traces_center_raw = data_f['traces_center_raw'].value
    # traces_center_demixed = data_f['traces_center_demixed'].value
    traces_center_subtracted = data_f['traces_center_subtracted'].value
    # traces_center_dff = data_f['traces_center_dff'].value
    traces_surround_raw = data_f['traces_surround_raw'].value
    neuropil_r = data_f['neuropil_r'].value
    neuropil_err = data_f['neuropil_err'].value
    data_f.close()

    if traces_center_raw.shape[1] != mov_grp['num_samples'].value:
        raise ValueError(
            'number of trace time points ({}) does not match frame number of '
            'corresponding movie ({}).'.format(traces_center_raw.shape[1],
                                               mov_grp['num_samples'].value))

    # traces_center_raw = traces_center_raw[:, :mov_grp['num_samples'].value]
    # traces_center_subtracted = traces_center_subtracted[:, :mov_grp['num_samples'].value]
    # traces_surround_raw = traces_surround_raw[:, :mov_grp['num_samples'].value]

    rf_img_max = tf.imread(
        os.path.join(data_folder, 'corrected_max_projection.tif'))
    rf_img_mean = tf.imread(
        os.path.join(data_folder, 'corrected_mean_projection.tif'))

    print 'adding segmentation results ...'
    rt_mo = nwb_f.create_module('rois_and_traces_' + plane_n)
    rt_mo.set_value('imaging_depth_micron', imaging_depth)
    is_if = rt_mo.create_interface('ImageSegmentation')
    is_if.create_imaging_plane('imaging_plane', description='')
    is_if.add_reference_image('imaging_plane', 'max_projection', rf_img_max)
    is_if.add_reference_image('imaging_plane', 'mean_projection', rf_img_mean)

    for i in range(mask_arr_c.shape[0]):
        curr_cen = mask_arr_c[i]
        curr_cen_n = 'roi_' + ft.int2str(i, 4)
        curr_cen_roi = ia.WeightedROI(curr_cen)
        curr_cen_pixels_yx = curr_cen_roi.get_pixel_array()
        curr_cen_pixels_xy = np.array(
            [curr_cen_pixels_yx[:, 1], curr_cen_pixels_yx[:, 0]]).transpose()
        is_if.add_roi_mask_pixels(image_plane='imaging_plane',
                                  roi_name=curr_cen_n,
                                  desc='',
                                  pixel_list=curr_cen_pixels_xy,
                                  weights=curr_cen_roi.weights,
                                  width=512,
                                  height=512)

        curr_sur = mask_arr_s[i]
        curr_sur_n = 'surround_' + ft.int2str(i, 4)
        curr_sur_roi = ia.ROI(curr_sur)
        curr_sur_pixels_yx = curr_sur_roi.get_pixel_array()
        curr_sur_pixels_xy = np.array(
            [curr_sur_pixels_yx[:, 1], curr_sur_pixels_yx[:, 0]]).transpose()
        is_if.add_roi_mask_pixels(image_plane='imaging_plane',
                                  roi_name=curr_sur_n,
                                  desc='',
                                  pixel_list=curr_sur_pixels_xy,
                                  weights=None,
                                  width=512,
                                  height=512)
    is_if.finalize()

    trace_f_if = rt_mo.create_interface('Fluorescence')
    seg_if_path = '/processing/rois_and_traces_' + plane_n + '/ImageSegmentation/imaging_plane'
    # print seg_if_path
    ts_path = mov_path + '/' + plane_n + '/corrected'

    print 'adding center fluorescence raw'
    trace_raw_ts = nwb_f.create_timeseries('RoiResponseSeries', 'f_center_raw')
    trace_raw_ts.set_data(traces_center_raw,
                          unit='au',
                          conversion=np.nan,
                          resolution=np.nan)
    trace_raw_ts.set_value('data_format', 'roi (row) x time (column)')
    trace_raw_ts.set_value('data_range', '[-8192, 8191]')
    trace_raw_ts.set_description(
        'fluorescence traces extracted from the center region of each roi')
    trace_raw_ts.set_time_as_link(ts_path)
    trace_raw_ts.set_value_as_link('segmentation_interface', seg_if_path)
    roi_names = [
        'roi_' + ft.int2str(ind, 4)
        for ind in range(traces_center_raw.shape[0])
    ]
    trace_raw_ts.set_value('roi_names', roi_names)
    trace_raw_ts.set_value('num_samples', traces_center_raw.shape[1])
    trace_f_if.add_timeseries(trace_raw_ts)
    trace_raw_ts.finalize()

    print 'adding neuropil fluorescence raw'
    trace_sur_ts = nwb_f.create_timeseries('RoiResponseSeries',
                                           'f_surround_raw')
    trace_sur_ts.set_data(traces_surround_raw,
                          unit='au',
                          conversion=np.nan,
                          resolution=np.nan)
    trace_sur_ts.set_value('data_format', 'roi (row) x time (column)')
    trace_sur_ts.set_value('data_range', '[-8192, 8191]')
    trace_sur_ts.set_description(
        'neuropil traces extracted from the surroud region of each roi')
    trace_sur_ts.set_time_as_link(ts_path)
    trace_sur_ts.set_value_as_link('segmentation_interface', seg_if_path)
    sur_names = [
        'surround_' + ft.int2str(ind, 4)
        for ind in range(traces_center_raw.shape[0])
    ]
    trace_sur_ts.set_value('roi_names', sur_names)
    trace_sur_ts.set_value('num_samples', traces_surround_raw.shape[1])
    trace_f_if.add_timeseries(trace_sur_ts)
    trace_sur_ts.finalize()

    roi_center_n_path = '/processing/rois_and_traces_' + plane_n + '/Fluorescence/f_center_raw/roi_names'
    # print 'adding center fluorescence demixed'
    # trace_demix_ts = nwb_f.create_timeseries('RoiResponseSeries', 'f_center_demixed')
    # trace_demix_ts.set_data(traces_center_demixed, unit='au', conversion=np.nan, resolution=np.nan)
    # trace_demix_ts.set_value('data_format', 'roi (row) x time (column)')
    # trace_demix_ts.set_description('center traces after overlapping demixing for each roi')
    # trace_demix_ts.set_time_as_link(mov_path + '/' + plane_n + '/corrected')
    # trace_demix_ts.set_value_as_link('segmentation_interface', seg_if_path)
    # trace_demix_ts.set_value('roi_names', roi_names)
    # trace_demix_ts.set_value('num_samples', traces_center_demixed.shape[1])
    # trace_f_if.add_timeseries(trace_demix_ts)
    # trace_demix_ts.finalize()

    print 'adding center fluorescence after neuropil subtraction'
    trace_sub_ts = nwb_f.create_timeseries('RoiResponseSeries',
                                           'f_center_subtracted')
    trace_sub_ts.set_data(traces_center_subtracted,
                          unit='au',
                          conversion=np.nan,
                          resolution=np.nan)
    trace_sub_ts.set_value('data_format', 'roi (row) x time (column)')
    trace_sub_ts.set_description(
        'center traces after overlap demixing and neuropil subtraction for each roi'
    )
    trace_sub_ts.set_time_as_link(mov_path + '/' + plane_n + '/corrected')
    trace_sub_ts.set_value_as_link('segmentation_interface', seg_if_path)
    trace_sub_ts.set_value_as_link('roi_names', roi_center_n_path)
    trace_sub_ts.set_value('num_samples', traces_center_subtracted.shape[1])
    trace_sub_ts.set_value('r', neuropil_r, dtype='float32')
    trace_sub_ts.set_value('rmse', neuropil_err, dtype='float32')
    trace_sub_ts.set_comments(
        'value "r": neuropil contribution ratio for each roi. '
        'value "rmse": RMS error of neuropil subtraction for each roi')
    trace_f_if.add_timeseries(trace_sub_ts)
    trace_sub_ts.finalize()

    trace_f_if.finalize()

    # print 'adding global dF/F traces for each roi'
    # trace_dff_if = rt_mo.create_interface('DfOverF')
    #
    # trace_dff_ts = nwb_f.create_timeseries('RoiResponseSeries', 'dff_center')
    # trace_dff_ts.set_data(traces_center_dff, unit='au', conversion=np.nan, resolution=np.nan)
    # trace_dff_ts.set_value('data_format', 'roi (row) x time (column)')
    # trace_dff_ts.set_description('global df/f traces for each roi center, input fluorescence is the trace after demixing'
    #                              ' and neuropil subtraction. global df/f is calculated by '
    #                              'allensdk.brain_observatory.dff.compute_dff() function.')
    # trace_dff_ts.set_time_as_link(ts_path)
    # trace_dff_ts.set_value_as_link('segmentation_interface', seg_if_path)
    # trace_dff_ts.set_value('roi_names', roi_names)
    # trace_dff_ts.set_value('num_samples', traces_center_dff.shape[1])
    # trace_dff_if.add_timeseries(trace_dff_ts)
    # trace_dff_ts.finalize()
    # trace_dff_if.finalize()

    rt_mo.finalize()