Ejemplo n.º 1
0
class Jail(Module):
    '''
    Jail Cortix module used to model criminal group population in a jail.

    Notes
    -----
    These are the `port` names available in this module to connect to respective
    modules: `probation`, `adjudication`, `arrested`, `prison`, and `community`.
    See instance attribute `port_names_expected`.

    '''
    def __init__(self, n_groups=1, pool_size=0.0):
        '''
        Parameters
        ----------
        n_groups: int
            Number of groups in the population.
        pool_size: float
            Upperbound on the range of the existing population groups. A random value
            from 0 to the upperbound value will be assigned to each group.

        '''

        super().__init__()

        self.port_names_expected = [
            'probation', 'adjudication', 'arrested', 'prison', 'community'
        ]
        quantities = list()
        self.ode_params = dict()

        self.initial_time = 0.0 * unit.day
        self.end_time = 100 * unit.day
        self.time_step = 0.5 * unit.day

        unit.month = 30 * unit.day
        unit.percent = 1 / 100

        # Population groups
        self.n_groups = n_groups

        # Jail population groups
        fjg_0 = np.random.random(self.n_groups) * pool_size
        fjg = Quantity(name='fjg',
                       formal_name='jail-pop-grps',
                       latex_name='$n_j^{(g)}$',
                       unit='# offenders',
                       value=fjg_0,
                       info='Jail Population Groups')
        quantities.append(fjg)

        # Model parameters: commitment coefficients

        # Jail to community
        a = 35 * unit.percent / unit.year * np.ones(self.n_groups)
        b = 40 * unit.percent / unit.year * np.ones(self.n_groups)
        cj0g_0 = (a +
                  (b - a) * np.random.random(self.n_groups)) / self.n_groups
        cj0g = Quantity(name='cj0g',
                        formal_name='commit-community-coeff-grps',
                        unit='1/s',
                        value=cj0g_0)
        self.ode_params['commit-to-community-coeff-grps'] = cj0g_0
        quantities.append(cj0g)

        # Jail to prison
        a = 60 * unit.percent / unit.year * np.ones(self.n_groups)
        b = 65 * unit.percent / unit.year * np.ones(self.n_groups)
        cjpg_0 = (a +
                  (b - a) * np.random.random(self.n_groups)) / self.n_groups
        cjpg = Quantity(name='cjpg',
                        formal_name='commit-prison-coeff-grps',
                        unit='1/s',
                        value=cjpg_0)
        self.ode_params['commit-to-prison-coeff-grps'] = cjpg_0
        quantities.append(cjpg)

        # Death term
        a = 0.5 * unit.percent / unit.year * np.ones(self.n_groups)
        b = 0.6 * unit.percent / unit.year * np.ones(self.n_groups)
        djg_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups
        self.ode_params['jail-death-rates-coeff'] = djg_0

        # Phase state
        self.population_phase = Phase(self.initial_time,
                                      time_unit='s',
                                      quantities=quantities)

        self.population_phase.SetValue('fjg', fjg_0, self.initial_time)

        # Initialize inflows to zero
        self.ode_params['arrested-inflow-rates'] = np.zeros(self.n_groups)
        self.ode_params['probation-inflow-rates'] = np.zeros(self.n_groups)
        self.ode_params['adjudication-inflow-rates'] = np.zeros(self.n_groups)

        return

    def run(self, *args):

        self.__zero_ode_parameters()

        time = self.initial_time

        while time <= self.end_time:

            # Interactions in the prison port
            #--------------------------------
            # one way "to" prison

            message_time = self.recv('prison')
            outflow_rates = self.__compute_outflow_rates(
                message_time, 'prison')
            self.send((message_time, outflow_rates), 'prison')

            # Interactions in the adjudication port
            #------------------------------------
            # one way "from" adjudication

            self.send(time, 'adjudication')
            (check_time, adjudication_inflow_rates) = self.recv('adjudication')
            assert abs(check_time - time) <= 1e-6
            self.ode_params[
                'adjudication-inflow-rates'] = adjudication_inflow_rates

            # Interactions in the arrested port
            #----------------------------------
            # one way "from" arrested

            self.send(time, 'arrested')
            (check_time, arrested_inflow_rates) = self.recv('arrested')
            assert abs(check_time - time) <= 1e-6
            self.ode_params['arrested-inflow-rates'] = arrested_inflow_rates

            # Interactions in the probation port
            #-----------------------------------
            # one way "from" probation

            self.send(time, 'probation')
            (check_time, probation_inflow_rates) = self.recv('probation')
            assert abs(check_time - time) <= 1e-6
            self.ode_params['probation-inflow-rates'] = probation_inflow_rates

            # Interactions in the community port
            #------------------------------
            # one way "to" community

            message_time = self.recv('community')
            outflow_rates = self.__compute_outflow_rates(
                message_time, 'community')
            self.send((message_time, outflow_rates), 'community')

            # Evolve jail group population to the next time stamp
            #----------------------------------------------------

            time = self.__step(time)

    def __rhs_fn(self, u_vec, t, params):

        fjg = u_vec  # jail population groups

        arrested_inflow_rates = params['arrested-inflow-rates']
        probation_inflow_rates = params['probation-inflow-rates']
        adjudication_inflow_rates = params['adjudication-inflow-rates']

        inflow_rates  = arrested_inflow_rates + probation_inflow_rates + \
                        adjudication_inflow_rates

        cj0g = self.ode_params['commit-to-community-coeff-grps']

        cjpg = self.ode_params['commit-to-prison-coeff-grps']

        outflow_rates = (cj0g + cjpg) * fjg

        death_rates_coeff = params['jail-death-rates-coeff']

        death_rates = death_rates_coeff * fjg

        dt_fjg = inflow_rates - outflow_rates - death_rates

        return dt_fjg

    def __step(self, time=0.0):
        r'''
        ODE IVP problem:
        Given the initial data at :math:`t=0`,
        :math:`u = (u_1(0),u_2(0),\ldots)`
        solve :math:`\frac{\text{d}u}{\text{d}t} = f(u)` in the interval
        :math:`0\le t \le t_f`.

        Parameters
        ----------
        time: float
            Time in SI unit.

        Returns
        -------
        None

        '''

        u_vec_0 = self.population_phase.GetValue('fjg', time)
        t_interval_sec = np.linspace(0.0, self.time_step, num=2)

        (u_vec_hist, info_dict) = odeint(self.__rhs_fn,
                                         u_vec_0,
                                         t_interval_sec,
                                         args=(self.ode_params, ),
                                         rtol=1e-4,
                                         atol=1e-8,
                                         mxstep=200,
                                         full_output=True)

        assert info_dict['message'] == 'Integration successful.', info_dict[
            'message']

        u_vec = u_vec_hist[1, :]  # solution vector at final time step
        values = self.population_phase.GetRow(time)  # values at previous time

        time += self.time_step

        self.population_phase.AddRow(time, values)

        # Update current values
        self.population_phase.SetValue('fjg', u_vec, time)

        return time

    def __compute_outflow_rates(self, time, name):

        fjg = self.population_phase.GetValue('fjg', time)

        assert np.all(fjg >= 0.0), 'values: %r' % fjg

        if name == 'prison':

            cjpg = self.ode_params['commit-to-prison-coeff-grps']

            outflow_rates = cjpg * fjg

        if name == 'community':

            cj0g = self.ode_params['commit-to-community-coeff-grps']

            outflow_rates = cj0g * fjg

        return outflow_rates

    def __zero_ode_parameters(self):
        '''
        If ports are not connected the corresponding outflows must be zero.

        '''

        zeros = np.zeros(self.n_groups)

        p_names = [p.name for p in self.ports]

        if 'community' not in p_names:
            self.ode_params['commit-to-community-coeff-grps'] = zeros

        if 'prison' not in p_names:
            self.ode_params['commit-to-prison-coeff-grps'] = zeros

        return
Ejemplo n.º 2
0
class Community(Module):
    """Community model with criminal group population.

    Community here is the system at large with all possible
    adult individuals included in any given society.

    Notes
    -----
    These are the `port` names available in this module to connect to respective
    modules:

     + `probation`,
     + `adjudication`,
     + `jail`, `prison`,
     + `arrested`, and
     + `parole`.

    See instance attribute `port_names_expected`.

    """
    def __init__(self,
                 n_groups=1,
                 non_offender_adult_population=100,
                 offender_pool_size=0.0,
                 free_offender_pool_size=0.0):
        """Constructor.

        Parameters
        ----------
        n_groups: int
            Number of groups in the population.
        non_offender_adult_population: float
            Pool of individuals reaching the adult age (SI) unit. Default: 100.
        offender_pool_size: float
            Upperbound on the range of the existing population groups. A random value
            from 0 to the upperbound value will be assigned to each group. This is
            typically a small number, say a fraction of a percent.

        """

        super().__init__()

        self.port_names_expected = [
            'probation', 'adjudication', 'jail', 'prison', 'arrested', 'parole'
        ]

        quantities = list()
        self.ode_params = dict()

        self.initial_time = 0.0 * unit.day
        self.end_time = 100 * unit.day
        self.time_step = 0.5 * unit.day
        self.show_time = (False, 10 * unit.day)
        self.log = logging.getLogger('cortix')

        unit.percent = 1 / 100

        # Population groups
        self.n_groups = n_groups

        # Community non-offender population
        n0_0 = np.array([float(non_offender_adult_population)])
        n0 = Quantity(name='n0',
                      formal_name='non-offender-adult-pop',
                      latex_name='$n_0$',
                      unit='# adults',
                      value=n0_0,
                      info='Non-Offender Adult Population')
        quantities.append(n0)

        # Community free-offender population groups
        f0g_0 = np.random.random(self.n_groups) * offender_pool_size
        f0g = Quantity(name='f0g',
                       formal_name='free-offender-pop-grps',
                       latex_name='$n_0^{(g)}$',
                       unit='# offenders',
                       value=f0g_0,
                       info='Free-Offender Population Groups')
        quantities.append(f0g)

        # Model parameters: commitment coefficients

        # Community non-offenders to offenders (arrested)
        a = 0.6 * unit.percent / unit.year * np.ones(self.n_groups)
        b = 0.8 * unit.percent / unit.year * np.ones(self.n_groups)
        c00g_0 = (a +
                  (b - a) * np.random.random(self.n_groups)) / self.n_groups
        c00g = Quantity(name='c00g',
                        formal_name='non-offenders-commit-arrested-coeff-grps',
                        unit='1/s',
                        value=c00g_0)
        self.ode_params['non-offenders-commit-to-arrested-coeff-grps'] = c00g_0
        quantities.append(c00g)

        # Community free-offenders to arrested (recidivism)
        a = 0.8 * unit.percent / unit.year * np.ones(self.n_groups)
        b = 0.9 * unit.percent / unit.year * np.ones(self.n_groups)
        c0rg_0 = (a +
                  (b - a) * np.random.random(self.n_groups)) / self.n_groups
        c0rg = Quantity(
            name='c0rg',
            formal_name='free-offenders-commit-arrested-coeff-grps',
            value=c0rg_0,
            unit='1/s')
        self.ode_params[
            'free-offenders-commit-to-arrested-coeff-grps'] = c0rg_0
        quantities.append(c0rg)

        # Death term for community offenders
        a = 0.8 * unit.percent / unit.year * np.ones(self.n_groups)
        b = 1.0 * unit.percent / unit.year * np.ones(self.n_groups)
        d0g_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups
        self.ode_params['free-offenders-death-rates-coeff'] = d0g_0

        # Death term for community non-offenders
        a = 0.5 * unit.percent / unit.year
        b = 1.0 * unit.percent / unit.year
        d0_0 = a + (b - a) * np.random.random()
        self.ode_params['non-offenders-death-rate-coeff'] = d0_0

        # Maturity term for community non-offenders
        a = 1.5 * unit.percent / unit.year
        b = 2.5 * unit.percent / unit.year
        s0_0 = a + (b - a) * np.random.random()
        self.ode_params['non-offenders-maturity-rate-coeff'] = s0_0
        self.ode_params[
            'non_offender_adult_population'] = non_offender_adult_population

        # Phase state
        self.population_phase = Phase(self.initial_time,
                                      time_unit='s',
                                      quantities=quantities)

        self.population_phase.SetValue('n0', n0_0, self.initial_time)
        self.population_phase.SetValue('f0g', f0g_0, self.initial_time)

        # Initialize inflows to zero
        self.ode_params['prison-inflow-rates'] = np.zeros(self.n_groups)
        self.ode_params['parole-inflow-rates'] = np.zeros(self.n_groups)
        self.ode_params['arrested-inflow-rates'] = np.zeros(self.n_groups)
        self.ode_params['jail-inflow-rates'] = np.zeros(self.n_groups)
        self.ode_params['adjudication-inflow-rates'] = np.zeros(self.n_groups)
        self.ode_params['probation-inflow-rates'] = np.zeros(self.n_groups)

    def run(self, *args):

        self.__zero_ode_parameters()

        time = self.initial_time

        while time <= self.end_time:

            if self.show_time[0] and abs(time % self.show_time[1] -
                                         0.0) <= 1.e-1:
                self.log.info('Community::time[d] = ' +
                              str(round(time / unit.day, 1)))

            self.__call_ports(time)

            # Evolve offenders group population to the next time stamp
            #---------------------------------------------------------

            time = self.__step(time)

    def __call_ports(self, time):

        # Interactions in the jail port
        #--------------------------------
        # one way "from" jail

        self.send(time, 'jail')
        (check_time, inflow_rates) = self.recv('jail')
        assert abs(check_time - time) <= 1e-6
        self.ode_params['jail-inflow-rates'] = inflow_rates

        # Interactions in the adjudication port
        #--------------------------------------
        # one way "from" adjudication

        self.send(time, 'adjudication')
        (check_time, inflow_rates) = self.recv('adjudication')
        assert abs(check_time - time) <= 1e-6
        self.ode_params['adjudication-inflow-rates'] = inflow_rates

        # Interactions in the probation port
        #--------------------------------
        # one way "from" probation

        self.send(time, 'probation')
        (check_time, inflow_rates) = self.recv('probation')
        assert abs(check_time - time) <= 1e-6
        self.ode_params['probation-inflow-rates'] = inflow_rates

        # Interactions in the prison port
        #--------------------------------
        # one way "from" prison

        self.send(time, 'prison')
        (check_time, inflow_rates) = self.recv('prison')
        assert abs(check_time - time) <= 1e-6
        self.ode_params['prison-inflow-rates'] = inflow_rates

        # Interactions in the parole port
        #--------------------------------
        # one way "from" parole

        self.send(time, 'parole')
        (check_time, inflow_rates) = self.recv('parole')
        assert abs(check_time - time) <= 1e-6
        self.ode_params['parole-inflow-rates'] = inflow_rates

        # Interactions in the arrested port
        #--------------------------------
        # two way "to" and "from" arrested

        # to
        message_time = self.recv('arrested')
        outflow_rates = self.__compute_outflow_rates(message_time, 'arrested')
        self.send((message_time, outflow_rates), 'arrested')

        # from
        self.send(time, 'arrested')
        (check_time, inflow_rates) = self.recv('arrested')
        assert abs(check_time - time) <= 1e-6
        self.ode_params['arrested-inflow-rates'] = inflow_rates

    def __step(self, time=0.0):
        r'''
        ODE IVP problem:
        Given the initial data at :math:`t=0`,
        :math:`u = (u_1(0),u_2(0),\ldots)`
        solve :math:`\frac{\text{d}u}{\text{d}t} = f(u)` in the interval
        :math:`0\le t \le t_f`.

        Parameters
        ----------
        time: float
            Time in SI unit.

        Returns
        -------
        None

        '''

        # Get state values
        a_vec = self.population_phase.GetValue('n0', time)
        b_vec = self.population_phase.GetValue('f0g', time)

        u_0 = np.concatenate((a_vec, b_vec))

        t_interval_sec = np.linspace(0.0, self.time_step, num=2)

        (u_vec_hist, info_dict) = odeint(self.__rhs_fn,
                                         u_0,
                                         t_interval_sec,
                                         args=(self.ode_params, ),
                                         rtol=1e-4,
                                         atol=1e-8,
                                         mxstep=200,
                                         full_output=True)

        assert info_dict['message'] == 'Integration successful.', info_dict[
            'message']

        u_vec = u_vec_hist[1, :]  # solution vector at final time step

        time += self.time_step

        # Update state variables
        values = self.population_phase.GetRow()  # values existing values
        self.population_phase.AddRow(
            time, values)  # copy on new time for convenience

        self.population_phase.SetValue('n0', u_vec[:1],
                                       time)  # insert new values
        self.population_phase.SetValue('f0g', u_vec[1:],
                                       time)  # insert new values

        return time

    def __rhs_fn(self, u_vec, t, params):

        n0 = u_vec[:1]  # non-offender population

        # source of non-offenders
        s0_coeff = params['non-offenders-maturity-rate-coeff']
        n0_0 = params['non_offender_adult_population']
        s0 = s0_coeff * n0_0

        # outflow rate to Arrested
        c00g = params['non-offenders-commit-to-arrested-coeff-grps']
        outflow_rate = np.sum(c00g * n0)

        # death rate
        death_rate_coeff = params['non-offenders-death-rate-coeff']
        death_rate = death_rate_coeff * n0

        dt_n0 = s0 - outflow_rate - death_rate

        f0g = u_vec[1:]  # free-offender population groups

        prison_inflow_rates = params['prison-inflow-rates']
        parole_inflow_rates = params['parole-inflow-rates']
        arrested_inflow_rates = params['arrested-inflow-rates']
        jail_inflow_rates = params['jail-inflow-rates']
        adjudication_inflow_rates = params['adjudication-inflow-rates']
        probation_inflow_rates = params['probation-inflow-rates']

        # free-offenders inflows
        inflow_rates = prison_inflow_rates + parole_inflow_rates +\
                       arrested_inflow_rates + jail_inflow_rates +\
                       adjudication_inflow_rates + probation_inflow_rates

        assert np.all(inflow_rates >= 0.0), 'values: %r' % inflow_rates

        c0rg = params['free-offenders-commit-to-arrested-coeff-grps']

        # free-offenders outflow (recidivism)
        outflow_rates = c0rg * f0g

        assert np.all(outflow_rates >= 0.0), 'values: %r' % outflow_rates

        death_rates_coeff = params['free-offenders-death-rates-coeff']

        death_rates = death_rates_coeff * f0g

        assert np.all(death_rates >= 0.0), 'values: %r' % death_rates

        dt_f0g = inflow_rates - outflow_rates - death_rates

        dt_u = np.concatenate((dt_n0, dt_f0g))

        return dt_u

    def __compute_outflow_rates(self, time, name):

        n0 = self.population_phase.GetValue('n0', time)
        f0g = self.population_phase.GetValue('f0g', time)

        if name == 'arrested':

            c0rg = self.ode_params[
                'free-offenders-commit-to-arrested-coeff-grps']

            c00g = self.ode_params[
                'non-offenders-commit-to-arrested-coeff-grps']

            # Recidivism and new offenders
            outflow_rates = c0rg * f0g + c00g * n0

        return outflow_rates

    def __zero_ode_parameters(self):
        '''
        If ports are not connected the corresponding outflows must be zero.

        '''

        zeros = np.zeros(self.n_groups)

        p_names = [p.name for p in self.ports]

        if 'arrested' not in p_names:
            self.ode_params['commit-to-arrested-coeff-grps'] = zeros

            self.ode_params['general-commit-to-arrested-coeff-grps'] = zeros

        return