Ejemplo n.º 1
0
def test_run():
    sc.heading('Testing run')

    msim_path = 'run_test.msim'
    scens_path = 'run_test.scens'

    # Test creation
    s1 = cv.Sim(pop_size=100)
    s2 = s1.copy()
    msim = cv.MultiSim(sims=[s1, s2])
    with pytest.raises(TypeError):
        cv.MultiSim(sims='not a sim')

    # Test other properties
    len(msim)
    msim.result_keys()
    msim.base_sim = None
    with pytest.raises(ValueError):
        msim.result_keys()
    msim.base_sim = msim.sims[0]  # Restore

    # Run
    msim.run(verbose=verbose)
    msim.reduce(quantiles=[0.1, 0.9], output=True)
    with pytest.raises(ValueError):
        msim.reduce(quantiles='invalid')
    msim.compare(output=True, do_plot=True, log_scale=False)

    # Plot
    for i in range(2):
        if i == 1:
            msim.reset()  # Reset as if reduce() was not called
        msim.plot()
        msim.plot_result('r_eff')
    print('↑ May print some plotting warnings')

    # Save
    for keep_people in [True, False]:
        msim.save(filename=msim_path, keep_people=keep_people)

    # Scenarios
    scens = cv.Scenarios(sim=s1, metapars={'n_runs': 1})
    scens.run(keep_people=True, verbose=verbose, debug=debug)
    for keep_people in [True, False]:
        scens.save(scens_path, keep_people=keep_people)
    cv.Scenarios.load(scens_path)

    # Tidy up
    remove_files(msim_path, scens_path)

    return
Ejemplo n.º 2
0
def test_migration():
    sc.heading('Testing migration...')

    # Create sim and people
    base = make_sim()
    base.people.version = version
    sim = cv.load(filename)
    sim.people = base.people

    # Create msim
    msim = cv.MultiSim(base_sim=sim)
    del msim.version  # To simulate <2.0.0
    msim.init_sims()

    # Create scenarios
    scens = cv.Scenarios(sim=sim)
    del scens.version  # To simulate <2.0.0

    # Try migrations
    new_sim = cv.migrate(sim, die=True)
    new_msim = cv.migrate(msim, die=True)
    new_scens = cv.migrate(scens, die=True)

    # Try something un-migratable
    with pytest.raises(TypeError):
        cv.migrate('Strings are not migratable', die=True)

    return new_sim, new_msim, new_scens
Ejemplo n.º 3
0
def test_msim(do_plot=False):
    sc.heading('Testing multisim...')

    # basic test for vaccine
    b117 = cv.variant('b117', days=0)
    sim = cv.Sim(use_waning=True, variants=[b117], **base_pars)
    msim = cv.MultiSim(sim, n_runs=2)
    msim.run()
    msim.reduce()

    to_plot = sc.objdict({
        'Total infections': ['cum_infections'],
        'New infections per day': ['new_infections'],
        'New Re-infections per day': ['new_reinfections'],
    })

    if do_plot:
        msim.plot(to_plot=to_plot,
                  do_save=0,
                  do_show=1,
                  legend_args={'loc': 'upper left'},
                  axis_args={'hspace': 0.4},
                  interval=35)

    return msim
Ejemplo n.º 4
0
    def run_msim(self, new_deaths=False):
        ''' Run the simulation -- if new_deaths, fit to daily deaths rather than cumulative cases + deaths '''
        if self.n_runs == 1:
            sim = self.sim
            sim.run()
        else:
            msim = cv.MultiSim(base_sim=self.sim)
            msim.run(n_runs=self.n_runs)
            sim = msim.reduce(output=True)
        if new_deaths:
            offset = cv.daydiff(sim['start_day'], sim.data['date'][0])
            d_data = self.smooth(sim.data['new_deaths'].values)
            d_sim = self.smooth(sim.results['new_deaths'].values[offset:])
            minlen = min(len(d_data), len(d_sim))
            d_data = d_data[:minlen]
            d_sim = d_sim[:minlen]
            deaths = {'deaths': dict(data=d_data, sim=d_sim, weights=1)}
            sim.compute_fit(custom=deaths,
                            keys=['cum_diagnoses', 'cum_deaths'],
                            weights={
                                'cum_diagnoses': 0.2,
                                'cum_deaths': 0.2
                            },
                            output=False)
        else:
            sim.compute_fit(output=False)

        self.sim = sim
        self.mismatch = sim.results.fit.mismatch

        return sim
def test_multisim_combine(
        do_plot=do_plot):  # If being run via pytest, turn off
    sc.heading('Combine results test')

    n_runs = 3
    pop_infected = 10

    print('Running first sim...')
    sim = cv.Sim(pop_size=pop_size, pop_infected=pop_infected, verbose=verbose)
    msim = cv.MultiSim(sim)
    msim.run(n_runs=n_runs, keep_people=True)
    sim1 = msim.combine(output=True)
    assert sim1['pop_size'] == pop_size * n_runs

    print(
        'Running second sim, results should be similar but not identical (stochastic differences)...'
    )
    sim2 = cv.Sim(pop_size=pop_size * n_runs,
                  pop_infected=pop_infected * n_runs)
    sim2.run(verbose=verbose)

    if do_plot:
        msim.plot()
        sim2.plot()

    return msim
def test_multisim_advanced():
    sc.heading('Advanced multisim options')

    # Settings
    msim_path = 'msim_test.msim'

    # Creat the sims/msims
    sims = sc.objdict()
    for i in range(4):
        sims[f's{i}'] = cv.Sim(label=f'Sim {i}',
                               pop_size=pop_size,
                               beta=0.01 * i)

    m1 = cv.MultiSim(sims=[sims.s0, sims.s1])
    m2 = cv.MultiSim(sims=[sims.s2, sims.s3])

    # Test methods
    m1.init_sims()
    m1.run()
    m2.run(reduce=True)
    m1.reduce()
    m1.mean()
    m1.median()
    m1.shrink()
    m1.disp()
    m1.summarize()
    m1.brief()

    # Check save/load
    m1.save(msim_path)
    m1b = cv.MultiSim.load(msim_path)
    assert np.allclose(m1.summary[:],
                       m1b.summary[:],
                       rtol=0,
                       atol=0,
                       equal_nan=True)
    os.remove(msim_path)

    # Check merging/splitting
    merged1 = cv.MultiSim.merge(m1, m2)
    merged2 = cv.MultiSim.merge([m1, m2], base=True)
    m1c, m2c = merged1.split()
    m1d, m2d = merged1.split(chunks=[2, 2])

    return merged1, merged2
Ejemplo n.º 7
0
def bypass():
    do_plot = True  # Whether to plot results
    n_seeds = 6  # Number of seeds to run each simulation with
    rand_seed = 1  # Overwrite the default random seed
    bypass_popfile = 'trans_r0_medium.ppl'
    pop_size = int(100e3)

    entry = {
        "index": 376.0,
        "mismatch": 0.03221581045452142,
        "pars": {
            "pop_infected": 0,
            "change_beta": 0.5313884845187986,
            "symp_prob": 0.08250498122080606
        }
    }

    params = sc.dcp(entry['pars'])
    if rand_seed is None:
        params['rand_seed'] = int(entry['index'])
    else:
        params['rand_seed'] = rand_seed

    # Ensure the population file exists
    if not os.path.exists(bypass_popfile):
        print(f'Population file {bypass_popfile} not found, recreating...')
        cvsch.make_population(pop_size=pop_size,
                              rand_seed=params['rand_seed'],
                              max_pop_seeds=5,
                              popfile=bypass_popfile,
                              do_save=True)

    scen = generate_scenarios()['as_normal']

    # Create the sim
    people = sc.loadobj(bypass_popfile)
    base_sim = cs.create_sim(params,
                             pop_size=pop_size,
                             load_pop=False,
                             people=people,
                             verbose=0.1)

    # Run the sims
    sims = []
    for seed in range(n_seeds):
        sim = sc.dcp(base_sim)
        sim.set_seed(seed=sim['rand_seed'] + seed)
        sim.label = f'Sim {seed}'
        sim['interventions'] += [cvsch.schools_manager(scen), seed_schools()]
        sim['beta_layer'] = dict(
            h=0.0, s=0.0, w=0.0, c=0.0, l=0.0
        )  # Turn off transmission in other layers, looking for in-school R0
        sims.append(sim)
    msim = cv.MultiSim(sims)
    msim.run(keep_people=True)

    return msim
Ejemplo n.º 8
0
def longway():
    pop_size = 2.25e5
    calibfile = os.path.join(
        folder,
        'pars_cases_begin=75_cases_end=75_re=1.0_prevalence=0.002_yield=0.024_tests=225_pop_size=225000.json'
    )
    par_list = sc.loadjson(calibfile)[par_inds[0]:par_inds[1]]
    scen = generate_scenarios()['as_normal']

    for stype, cfg in scen.items():
        if cfg:
            cfg['start_day'] = '2020-09-07'  # Move school start earlier

    # Configure and run the sims
    sims = []
    for eidx, entry in enumerate(par_list):
        par = sc.dcp(entry['pars'])
        par['rand_seed'] = int(entry['index'])

        # Clunky, but check that the population exists
        pop_seed = par['rand_seed'] % 5
        popfile = os.path.join(
            folder, 'inputs',
            f'kc_synthpops_clustered_{int(pop_size)}_withstaff_seed') + str(
                pop_seed) + '.ppl'
        if not os.path.exists(popfile):
            print(f'Population file {popfile} not found, recreating...')
            cvsch.make_population(pop_size=pop_size,
                                  rand_seed=par['rand_seed'],
                                  max_pop_seeds=5,
                                  popfile=popfile,
                                  do_save=True)

        par['pop_infected'] = 0  # Do NOT seed infections
        par['beta_layer'] = dict(
            h=0.0, s=0.0, w=0.0, c=0.0, l=0.0
        )  # Turn off transmission in other layers, looking for in-school R0
        sim = cs.create_sim(par, pop_size=pop_size, folder=folder)

        delay = sim.day('2020-09-16')  # Pick a Monday
        sim['interventions'] += [
            cvsch.schools_manager(scen),
            seed_schools(delay=delay, n_infections=1, choose_students=False)
        ]
        sims.append(sim)

    msim = cv.MultiSim(sims)
    msim.run(keep_people=True)

    return msim
def test_multisim_reduce(do_plot=do_plot):  # If being run via pytest, turn off
    sc.heading('Combine results test')

    n_runs = 3
    pop_infected = 10

    sim = cv.Sim(pop_size=pop_size, pop_infected=pop_infected)
    msim = cv.MultiSim(sim, n_runs=n_runs, noise=0.1)
    msim.run(verbose=verbose, reduce=True)

    if do_plot:
        msim.plot()

    return msim
Ejemplo n.º 10
0
def test_waning(do_plot=False):
    sc.heading('Testing with and without waning')
    msims = dict()

    for rescale in [0, 1]:
        print(f'Checking with rescale = {rescale}...')

        # Define parameters specific to this test
        pars = dict(n_days=90,
                    beta=0.008,
                    nab_decay=dict(form='nab_decay',
                                   decay_rate1=0.1,
                                   decay_time1=250,
                                   decay_rate2=0.001))

        # Optionally include rescaling
        if rescale:
            pars.update(
                pop_scale=10,
                rescale_factor=
                2.0,  # Use a large rescale factor to make differences more obvious
            )

        # Run the simulations and pull out the results
        s0 = cv.Sim(base_pars, **pars, use_waning=False,
                    label='No waning').run()
        s1 = cv.Sim(base_pars, **pars, use_waning=True,
                    label='With waning').run()
        res0 = s0.summary
        res1 = s1.summary
        msim = cv.MultiSim([s0, s1])
        msims[rescale] = msim

        # Check results
        for key in [
                'n_susceptible', 'cum_infections', 'cum_reinfections',
                'pop_nabs', 'pop_protection', 'pop_symp_protection'
        ]:
            v0 = res0[key]
            v1 = res1[key]
            print(f'Checking {key:20s} ... ', end='')
            assert v1 > v0, f'Expected {key} to be higher with waning than without'
            print(f'✓ ({v1} > {v0})')

        # Optionally plot
        if do_plot:
            msim.plot('overview-strain', rotation=30)

    return msims
Ejemplo n.º 11
0
def test_vl_testing(fig_path=None):
    sc.heading('Test viral loads with different types of test')
    sc.heading('Setting up...')
    sc.tic()

    if fig_path is None:
        fig_path = f'results/test_with_vl.png'

    pars = dict(
        pop_size=50e3,
        pop_infected=100,
        start_day='2020-02-01',
        end_day='2020-03-30',
    )
    sim = cv.Sim(pars)
    sim.initialize()

    # Create interventions
    # Set parameters
    n_people = sim['pop_size']
    n_tests = 0.02 * n_people
    delay = 1
    start_day = 20

    sims = []
    for pcr_prop in np.linspace(0, 1, 5):
        tn = cv.test_num(daily_tests=n_tests,
                         lod={
                             3.0: pcr_prop,
                             5.0: 1 - pcr_prop
                         },
                         symp_test=5.0,
                         start_day=start_day,
                         test_delay=delay)
        sim = cv.Sim(interventions=tn, label=f'{pcr_prop*100:.0f}% PCR')
        sims.append(sim)

    # Run and plot results
    to_plot = [
        'new_infections', 'cum_infections', 'new_inf_neg', 'cum_inf_neg',
        'new_noninf_pos', 'cum_noninf_pos', 'new_diagnoses', 'cum_diagnoses'
    ]

    msim = cv.MultiSim(sims)
    msim.run(keep_people=True)
    msim.plot(to_plot=to_plot, do_save=True, fig_path=fig_path, do_show=False)

    return msim
Ejemplo n.º 12
0
def test_multisim_reduce(do_plot=False):  # If being run via pytest, turn off
    sc.heading('Combine results test')

    n_runs = 3
    pop_size = 1000
    pop_infected = 10

    print('Running first sim...')
    sim = cv.Sim(pop_size=pop_size, pop_infected=pop_infected)
    msim = cv.MultiSim(sim, n_runs=n_runs, noise=0.1)
    msim.run(verbose=verbose)
    msim.reduce()
    if do_plot:
        msim.plot()

    return msim
Ejemplo n.º 13
0
def test_sims(do_plot=False):
    s1 = cs.create_sim(pop_size=10e3, load_pop=False, label='Default')
    s2 = cs.create_sim(pop_size=10e3,
                       load_pop=False,
                       rand_seed=23948,
                       label='Different seed')
    s3 = cs.create_sim(pop_size=10e3,
                       load_pop=False,
                       beta=0.03,
                       label='High beta')

    msim = cv.MultiSim([s1, s2, s3])
    msim.run()

    if do_plot:
        msim.plot()

    return msim
Ejemplo n.º 14
0
def make_msims(sims):
    ''' Take a slice of sims and turn it into a multisim '''
    msim = cv.MultiSim(sims)
    draw, seed = sims[0].meta.inds
    for s, sim in enumerate(sims):  # Check that everything except seed matches
        assert draw == sim.meta.inds[0]
        assert (s == 0) or seed != sim.meta.inds[1]
    msim.meta = sc.objdict()
    msim.meta.inds = [draw]
    msim.meta.vals = sc.dcp(sims[0].meta.vals)
    msim.meta.vals.pop('seed')
    print(f'Processing multisim {msim.meta.vals.values()}...')

    if save_sim:  # NB, generates ~2 GB of files for a full run
        id_str = '_'.join([str(i) for i in msim.meta.inds])
        msimfile = f'{cachefolder}/final_msim{id_str}.msim'  # File to save the partially run sim to
        msim.save(msimfile)

    return msim
Ejemplo n.º 15
0
import covasim as cv

sim = cv.Sim()  # Create the sim
msim1 = cv.MultiSim(sim, n_runs=5)  # Create the multisim
msim1.run()  # Run them in parallel
msim1.combine()  # Combine into one sim
msim1.plot()  # Plot results

sim = cv.Sim()  # Create the sim
msim2 = cv.MultiSim(sim, n_runs=11, noise=0.1)  # Set up a multisim with noise
msim2.run()  # Run
msim2.reduce()  # Compute statistics
msim2.plot()  # Plot

# Run multiple sims
n_sims = 5
betas = [0.015 * (1 + 0.02 * i) for i in range(n_sims)]
labels = [f'beta={beta}' for beta in betas]
sims = [cv.Sim(beta=betas[i], label=labels[i])
        for i in range(n_sims)]  # Create sims
for sim in sims:
    sim.run()
msim3 = cv.MultiSim(sims)  # Convert to multisim
msim3.plot()  # Plot as single sim
Ejemplo n.º 16
0
p.static2 = dict(
    pop_size=basepop,
    pop_infected=popinfected // popscale2,
    pop_scale=popscale2,
    rescale=False,
)

# Create and run the sims
keys = p.keys()

for key in keys:
    p[key].update(shared)

for key in keys:
    s[key] = cv.Sim(pars=p[key], label=key)
    m[key] = cv.MultiSim(base_sim=s[key], n_runs=10)

for key in keys:
    m[key].run()
    m[key].reduce()

# Plot
to_plot = {
    'Totals': ['cum_infections', 'cum_diagnoses'],
    'New': ['new_infections', 'new_diagnoses'],
    'Total tests': ['cum_tests'],
    'New tests': ['new_tests'],
}
log_scale = ['Total tests']

for key in keys:
Ejemplo n.º 17
0
'''
Test MultiSim merging and splitting
'''

import covasim as cv; cv

m1 = cv.MultiSim(cv.Sim(label='sim1'), initialize=True)
m2 = cv.MultiSim(cv.Sim(label='sim2'), initialize=True)
m3 = cv.MultiSim.merge(m1, m2)
m3.run()
m1b, m2b = m3.split()

msim = cv.MultiSim(cv.Sim(), n_runs=6)
msim.run()
m1, m2 = msim.split(inds=[[0,2,4], [1,3,5]])
mlist1 = msim.split(chunks=[2,4]) # Equivalent to inds=[[0,1], [2,3,4,5]]
mlist2 = msim.split(chunks=3) # Equivalent to inds=[[0,1,2], [3,4,5]]
Ejemplo n.º 18
0
'''
Illustrate different ways of printing a sim.
'''

import sciris as sc
import covasim as cv

sim = cv.Sim(label='sim1', verbose=0)
sim.run()

sc.heading('print(sim)')
print(sim)

sc.heading('sim.summarize()')
sim.summarize()

sc.heading('sim.brief()')
sim.brief()

sc.heading('msim.summarize()')
msim = cv.MultiSim(sim, verbose=0)
msim.run(reduce=True)
msim.summarize()
Ejemplo n.º 19
0
'''
Test that parallel and serial MultiSims give the same results
'''

import numpy as np
import covasim as cv

m1 = cv.MultiSim(cv.Sim())
m1.run()
m1.reduce()

m2 = cv.MultiSim(cv.Sim())
m2.run(parallel=False)
m2.reduce()

assert np.all(
    m1.results['cum_infections'].values == m2.results['cum_infections'].values)

m1.plot(plot_sims=True)
m2.plot(plot_sims=True)
                         pop_size=pop_size,
                         load_pop=False,
                         people=people,
                         verbose=0.1)
base_sim['interventions'] = []  # Remove all interventions

#%% Run the sims
sims = []
for key, scen in all_scens.items():
    for seed in range(n_seeds):
        sim = sc.dcp(base_sim)
        sim.set_seed(seed=sim['rand_seed'] + seed)
        sim.label = key
        sim['interventions'] += [cvsch.schools_manager(scen)]
        sims.append(sim)
msim_raw = cv.MultiSim(sims)
msim_raw.run()
msims = msim_raw.split(chunks=[n_seeds] * (len(sims) // n_seeds))
msims = list(msims)
res = sc.odict()
for msim in msims:
    msim.reduce()
    base = msim.base_sim
    sc.heading(base.label)
    print(base.school_results)
    res[base.label] = base.school_results

#%% Plotting
sc.heading('Plotting...')
if do_plot:
    msim_base = cv.MultiSim.merge(msims, base=True)
########################################################################
if __name__ == '__main__':

    #betas = [i / 10000 for i in range(72, 77, 1)]

    # Quick calibration
    if whattorun == 'quickfit':
        s0 = make_sim(seed=1, beta=0.0077, end_day=data_end, verbose=0.1)
        sims = []
        for seed in range(6):
            sim = s0.copy()
            sim['rand_seed'] = seed
            sim.set_seed()
            sim.label = f"Sim {seed}"
            sims.append(sim)
        msim = cv.MultiSim(sims)
        msim.run()
        msim.reduce()
        if do_plot:
            msim.plot(to_plot=to_plot,
                      do_save=True,
                      do_show=False,
                      fig_path=f'uk.png',
                      legend_args={'loc': 'upper left'},
                      axis_args={'hspace': 0.4},
                      interval=50,
                      n_cols=2)

    # Full parameter/seed search
    elif whattorun == 'fullfit':
        fitsummary = []
pars = sc.objdict(
    pop_size=pop_size,
    pop_infected=pop_infected // pop_scale,
    pop_scale=pop_scale,
    pop_type=pop_type,
    start_day=start_day,
    n_days=n_days,
    asymp_factor=1.9,
    beta=beta,
    contacts=cons,
)

# Create the baseline simulation
sim = cv.Sim(pars=pars, datafile=data_path, popfile=pop_path, location='uk')
msim = cv.MultiSim(base_sim=sim)  # Create using your existing sim as the base

# Interventions

#opening and closing schools intervention changing the h,s,w,c values and ti_start to
#account for changes in Table 1 in the ms
#baseline scenario

# Create the baseline simulation

#interventions = []
#intervention of some testing (tc) starts on 19th March and we run until 1st April when it increases
tc_start = '2020-03-16'
tc_day = (sc.readdate(tc_start) - start_day).days
#intervention of some testing (te) starts on 1st April and we run until 1st May when it increases
te_start = '2020-04-01'
Ejemplo n.º 23
0
        pl.figure()
        pl.plot(self.tvec, self.exposed)
        pl.xlabel('Day')
        pl.ylabel('Number infected')
        pl.title('Number of elderly people with active COVID')
        return


if __name__ == '__main__':

    # Define and run the baseline simulation
    pars = dict(
        pop_size = 50e3,
        pop_infected = 100,
        n_days = 90,
        verbose = 0,
    )
    orig_sim = cv.Sim(pars, label='Default')

    # Define the intervention and the scenario sim
    protect = protect_elderly(start_day='2020-04-01', end_day='2020-05-01', rel_sus=0.1) # Create intervention
    sim = cv.Sim(pars, interventions=protect, label='Protect the elderly')

    # Run and plot
    msim = cv.MultiSim([orig_sim, sim])
    msim.run()
    msim.plot()

    # Plot intervention
    protect = msim.sims[1].get_intervention(protect_elderly) # Find intervention by type
    protect.plot()
Ejemplo n.º 24
0

if __name__ == '__main__':

    T = sc.tic()

    use_multisim = 1
    use_safegraph = 1

    # Settings
    reps = 5  # Set multiple runs to average over likelihood
    base_sim = create_sim(use_safegraph=use_safegraph)

    # Plot calibration
    if use_multisim:
        msim = cv.MultiSim(base_sim, n_runs=reps)
        msim.run(reseed=True,
                 noise=0.0,
                 keep_people=True,
                 par_args={'ncpus': 5})
        sims = msim.sims
        msim.plot(to_plot='overview', plot_sims=True)
        msim.reduce()
        sim = msim.base_sim
    else:
        sim = base_sim
        sim.run()
        sims = [sim]

    # Do plotting
    sim, fit = run_sim(sim=sim, use_safegraph=use_safegraph, interactive=True)
Ejemplo n.º 25
0
    beta=0.015,
    start_day='2020-03-01',
    end_day='2020-06-17',
    rescale=True,
)

sim = cv.Sim(pars, datafile=data.epi)

interventions = [
    cv.change_beta(days=20, changes=0.49),
    cv.test_num(daily_tests=sim.data['new_tests'].dropna(), symp_test=17),
]

sim.update_pars(interventions=interventions)
if do_run:
    msim = cv.MultiSim(sim)
    msim.run(n_runs=20, par_args={'ncpus': 5})
    msim.reduce()
    msim.save(msimfile)
else:
    msim = cv.load(msimfile)

#%% Plotting
for interv in msim.base_sim['interventions']:
    interv.do_plot = False

to_plot = ['cum_diagnoses', 'new_diagnoses', 'cum_deaths', 'new_deaths']
fig_args = dict(figsize=(18, 18))
scatter_args = dict(alpha=0.3, marker='o')
dateformat = '%d %b'
Ejemplo n.º 26
0
'''
Illustrate different Numba options
'''

import covasim as cv

# Create a standard 32-bit simulation
sim32 = cv.Sim(label='32-bit, single-threaded (default)', verbose='brief')
sim32.run()

# Use 64-bit instead of 32
cv.options.set(precision=64)
sim64 = cv.Sim(label='64-bit, single-threaded', verbose='brief')
sim64.run()

# Use parallel threading
cv.options.set(numba_parallel=True)
sim_par = cv.Sim(label='64-bit, multi-threaded', verbose='brief')
sim_par.run()

# Reset to defaults
cv.options.set('defaults')
sim32b = cv.Sim(label='32-bit, single-threaded (restored)', verbose='brief')
sim32b.run()

# Plot
msim = cv.MultiSim([sim32, sim64, sim_par, sim32b])
msim.plot()
Ejemplo n.º 27
0
########################################################################
if __name__ == '__main__':

    #betas = [i / 10000 for i in range(72, 77, 1)]

    # Quick calibration
    if whattorun == 'quickfit':
        s0 = make_sim(seed=1, beta=0.008, end_day='2021-06-20', verbose=0.1)
        sims = []
        for seed in range(4):
            sim = s0.copy()
            sim['rand_seed'] = seed
            sim.set_seed()
            sim.label = f"Sim {seed}"
            sims.append(sim)
        msim = cv.MultiSim(sims)
        msim.run()
        #msim.reduce()
        msim.reduce(quantiles=[0.25, 0.75])
        #sim.to_excel('my-sim.xlsx')
        if do_plot:
            msim.plot(to_plot=to_plot,
                      do_save=True,
                      do_show=False,
                      fig_path=f'uk.png',
                      legend_args={'loc': 'upper left'},
                      axis_args={'hspace': 0.4},
                      interval=60,
                      n_cols=2)
            msim.plot('strains',
                      do_save=True,
                    sim.label = f'{skey} + {tkey}'
                    sim.key1 = skey
                    sim.key2 = tkey
                    sim.scen = this_scen
                    sim.tscen = test
                    sim.dynamic_par = par

                    sims.append(sim)
                    proc += 1

                    if len(
                            sims
                    ) == batch_size or proc == tot:  # or (tidx == len(testing)-1 and eidx == len(par_list)-1):
                        print(
                            f'Running sims {proc-len(sims)}-{proc-1} of {tot}')
                        msim = cv.MultiSim(sims)
                        msims.append(msim)
                        msim.run(reseed=False,
                                 par_args={'ncpus': 16},
                                 noise=0.0,
                                 keep_people=False)
                        sims = []

            print(f'*** Saving after completing {skey}')
            sims_this_scenario = [
                s for msim in msims for s in msim.sims if s.key1 == skey
            ]
            msim = cv.MultiSim(sims_this_scenario)

        msim = cv.MultiSim.merge(msims)
        msim.save(os.path.join(folder, 'msims', f'{stem}.msim'),
Ejemplo n.º 29
0
#%%
for seed in [2, 3, 4, 6, 8, 9, 10, 16, 20, 25, 27, 33, 37, 39, 43, 44, 50, 58]:
    print(str('Sim') + str(seed) + str('; ratio=') + str('1.8'))
    sim = create_sim(seed=seed, ratio=1.8)
    sim.run()
    sims5.append(sim)

#%%
for seed in [2, 3, 4, 6, 8, 9, 10, 16, 20, 25, 27, 33, 37, 39, 43, 44, 50, 58]:
    print(str('Sim') + str(seed) + str('; ratio=') + str('1.9'))
    sim = create_sim(seed=seed, ratio=1.9)
    sim.run()
    sims6.append(sim)

#%%
msim1 = cv.MultiSim(sims1)
msim1.reduce()
msim1.plot(to_plot=['new_infections'],
           do_show=False,
           legend_args={'loc': 'best'},
           axis_args={'hspace': 0.4},
           interval=50,
           n_cols=1)
pl.axvline(sim.day('2020-12-14'), linestyle='--')
pl.text(sim.day('2020-12-14') + 2, 7600, 'Introduction of B.1.1.7')
pl.title('Ratio = 1.4: Number of new infections')
msim1.plot(to_plot=['cum_infections'],
           do_show=False,
           legend_args={'loc': 'upper left'},
           axis_args={'hspace': 0.4},
           interval=50,
Ejemplo n.º 30
0
v1 = cv.vaccine(days=20, prob=1.0, rel_sus=1.0,
                rel_symp=0.0)  # Prevent symptoms but not transmission
v2 = cv.vaccine(days=50, prob=1.0, rel_sus=0.0, rel_symp=0.0)  # Prevent both
sim = cv.Sim(interventions=[v1, v2])
sim.run()
sim.plot()


# Age targeting
def target_over_65(sim, prob=1.0):
    ''' Subtarget '''
    inds = sc.findinds(sim.people.age > 65)
    vals = prob * np.ones(len(inds))
    return {'inds': inds, 'vals': vals}


v3 = cv.vaccine(days=20,
                prob=0.0,
                rel_sus=0.5,
                rel_symp=0.2,
                subtarget=target_over_65)  # Age targeting
sim2 = cv.Sim(label='Status quo', n_days=180)
sim3 = cv.Sim(label='Vaccinate over 65s', n_days=180, interventions=v3)
msim = cv.MultiSim([sim2, sim3])
msim.run()
msim.plot()

sim4 = cv.Sim(interventions=cv.vaccine(
    days=[10, 20, 30, 40], prob=0.8, rel_sus=0.5, cumulative=[1, 0.5, 0.5, 0]))
sim4.run()
sim4.plot()