Ejemplo n.º 1
0
def oneparamcov_noautoflush(save_coverage=False, in_memory=False):
    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.dtype('int64')))
    t_ctxt.axis = AxisTypeEnum.TIME
    t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(t_ctxt)

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 0d spatial topology (station/trajectory)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample coverage_model', pdict, tdom, sdom, in_memory, auto_flush_values=False)

    # Insert some timesteps (automatically expands other arrays)
    nt = 100
    scov.insert_timesteps(nt)

    # Add data for the parameter
    scov.set_parameter_values('time', value=np.arange(nt))

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/sample.cov')

    return scov
    def test_get_dataset_to_xml(self):
        dataset_id = self._make_dataset()
        coverage_path = DatasetManagementService()._get_coverage_path(
            dataset_id)
        cov = SimplexCoverage.load(coverage_path)

        xml_str = self.rp.get_dataset_xml(coverage_path)
        dom = parseString(xml_str)
        node = dom.getElementsByTagName('addAttributes')

        metadata = node[0]
        for n in metadata.childNodes:
            if n.nodeType != 3:
                if n.attributes["name"].value == "title":
                    self.assertEquals(cov.name, n.childNodes[0].nodeValue)
                if n.attributes["name"].value == "institution":
                    self.assertEquals('OOI', n.childNodes[0].nodeValue)
                if n.attributes["name"].value == "infoUrl":
                    self.assertEquals(self.rp.pydap_url + cov.name,
                                      n.childNodes[0].nodeValue)
        parameters = []
        node = dom.getElementsByTagName('sourceName')
        for n in node:
            if n.nodeType != 3:
                parameters.append(str(n.childNodes[0].nodeValue))
        cov_params = [key for key in cov.list_parameters()]
        self.assertEquals(parameters, cov_params)
        cov.close()
Ejemplo n.º 3
0
def test_plot_1():
    from coverage_model.test.examples import SimplexCoverage
    import matplotlib.pyplot as plt

    cov=SimplexCoverage.load('test_data/usgs.cov')

    log.debug('Plot the \'water_temperature\' and \'streamflow\' for all times')
    wtemp = cov.get_parameter_values('water_temperature')
    wtemp_pc = cov.get_parameter_context('water_temperature')
    sflow = cov.get_parameter_values('streamflow')
    sflow_pc = cov.get_parameter_context('streamflow')
    times = cov.get_parameter_values('time')
    time_pc = cov.get_parameter_context('time')

    fig = plt.figure()
    ax1 = fig.add_subplot(2,1,1)
    ax1.plot(times,wtemp)
    ax1.set_xlabel('{0} ({1})'.format(time_pc.name, time_pc.uom))
    ax1.set_ylabel('{0} ({1})'.format(wtemp_pc.name, wtemp_pc.uom))

    ax2 = fig.add_subplot(2,1,2)
    ax2.plot(times,sflow)
    ax2.set_xlabel('{0} ({1})'.format(time_pc.name, time_pc.uom))
    ax2.set_ylabel('{0} ({1})'.format(sflow_pc.name, sflow_pc.uom))

    plt.show(0)
 def test_get_dataset_to_xml(self):
     dataset_id = self._make_dataset()
     coverage_path = DatasetManagementService()._get_coverage_path(dataset_id)
     cov = SimplexCoverage.load(coverage_path)
     
     xml_str = self.rp.get_dataset_xml(coverage_path)
     dom = parseString(xml_str)
     node = dom.getElementsByTagName('addAttributes')
     
     metadata = node[0]
     for n in metadata.childNodes:
         if n.nodeType != 3:
             if n.attributes["name"].value == "title":
                 self.assertEquals(cov.name, n.childNodes[0].nodeValue)
             if n.attributes["name"].value == "institution":
                 self.assertEquals('OOI', n.childNodes[0].nodeValue)
             if n.attributes["name"].value == "infoUrl":
                 self.assertEquals(self.rp.pydap_url+cov.name, n.childNodes[0].nodeValue)
     parameters = []
     node = dom.getElementsByTagName('sourceName')
     for n in node:
         if n.nodeType != 3:
             parameters.append(str(n.childNodes[0].nodeValue))
     cov_params = [key for key in cov.list_parameters()]
     self.assertEquals(parameters, cov_params)
     cov.close()
 def test_get_dataset_to_xml(self):
     def init(self):
         super(RegistrationProcess, self).__init__()
         self.CFG = CFG
     RegistrationProcess.__init__ = init
     self.rp = RegistrationProcess()
     self.rp.on_start()
     dataset_id = self._make_dataset()
     coverage_path = DatasetManagementService()._get_coverage_path(dataset_id)
     cov = SimplexCoverage.load(coverage_path)
     
     xml_str = self.rp.get_dataset_xml(coverage_path, 'product_id', 'product_name')
     dom = parseString(xml_str)
     node = dom.getElementsByTagName('addAttributes')
     
     metadata = node[0]
     for n in metadata.childNodes:
         if n.nodeType != 3:
             if n.attributes["name"].value == "title":
                 self.assertEquals('product_name', n.childNodes[0].nodeValue)
             if n.attributes["name"].value == "institution":
                 self.assertEquals('OOI', n.childNodes[0].nodeValue)
             if n.attributes["name"].value == "infoUrl":
                 self.assertEquals(self.rp.pydap_url+cov.name, n.childNodes[0].nodeValue)
     parameters = []
     node = dom.getElementsByTagName('sourceName')
     for n in node:
         if n.nodeType != 3:
             parameters.append(str(n.childNodes[0].nodeValue))
     cov_params = [key for key in cov.list_parameters()]
     for p in parameters:
         self.assertIn(p, cov_params)
     cov.close()
Ejemplo n.º 6
0
def methodized_read():
    from coverage_model import SimplexCoverage
    from coverage_model.basic_types import DomainOfApplication
    import numpy as np
    import os

    log.debug('============ Station ============')
    pth = 'test_data/usgs.cov'
    if not os.path.exists(pth):
        raise SystemError('Cannot proceed, \'{0}\' file must exist.  Run the \'ncstation2cov()\' function to generate the file.'.format(pth))

    cov=SimplexCoverage.load(pth)
    ra=np.zeros([0])
    log.debug('\n>> All data for first timestep\n')
    log.debug(cov.get_parameter_values('water_temperature',0,None,ra))
    log.debug('\n>> All data\n')
    log.debug(cov.get_parameter_values('water_temperature',None,None,None))
    log.debug('\n>> All data for second, fifth and sixth timesteps\n')
    log.debug(cov.get_parameter_values('water_temperature',[[1,4,5]],None,None))
    log.debug('\n>> First datapoint (in x) for every 5th timestep\n')
    log.debug(cov.get_parameter_values('water_temperature',slice(0,None,5),0,None))
    log.debug('\n>> First datapoint for first 10 timesteps, passing DOA objects\n')
    tdoa = DomainOfApplication(slice(0,10))
    sdoa = DomainOfApplication(0)
    log.debug(cov.get_parameter_values('water_temperature',tdoa,sdoa,None))

    log.debug('\n============ Grid ============')
    pth = 'test_data/ncom.cov'
    if not os.path.exists(pth):
        raise SystemError('Cannot proceed, \'{0}\' file must exist.  Run the \'ncstation2cov()\' function to generate the file.'.format(pth))

    cov=SimplexCoverage.load(pth)
    ra=np.zeros([0])
    log.debug('\n>> All data for first timestep\n')
    log.debug(cov.get_parameter_values('water_temp',0,None,ra))
    log.debug('\n>> All data\n')
    log.debug(cov.get_parameter_values('water_temp',None,None,None))
    log.debug('\n>> All data for first, fourth, and fifth timesteps\n')
    log.debug(cov.get_parameter_values('water_temp',[[0,3,4]],None,None))
    log.debug('\n>> Data from z=0, y=10, x=10 for every 2nd timestep\n')
    log.debug(cov.get_parameter_values('water_temp',slice(0,None,2),[0,10,10],None))
    log.debug('\n>> Data from z=0-10, y=10, x=10 for the first 2 timesteps, passing DOA objects\n')
    tdoa = DomainOfApplication(slice(0,2))
    sdoa = DomainOfApplication([slice(0,10),10,10])
    log.debug(cov.get_parameter_values('water_temp',tdoa,sdoa,None))
Ejemplo n.º 7
0
    def cov_io(self, context, value_array, comp_val=None):
        pdict = ParameterDictionary()
        time = ParameterContext(name='time', param_type=QuantityType(value_encoding=np.float64))
        pdict.add_context(context)
        pdict.add_context(time, True)
        # Construct temporal and spatial Coordinate Reference System objects
        tcrs = CRS([AxisTypeEnum.TIME])
        scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

        # Construct temporal and spatial Domain objects
        tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
        sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 0d spatial topology (station/trajectory)

        # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
        cov = SimplexCoverage('test_data', create_guid(), 'sample coverage_model', parameter_dictionary=pdict, temporal_domain=tdom, spatial_domain=sdom)

        cov.insert_timesteps(len(value_array))
        cov.set_parameter_values('test', tdoa=slice(0,len(value_array)), value=value_array)
        comp_val = comp_val if comp_val is not None else value_array
        testval = cov.get_parameter_values('test')
        try:
            np.testing.assert_array_equal(testval, comp_val)
        except:
            print repr(value_array)
            raise
Ejemplo n.º 8
0
    def execute(self, quals, req_columns):
        #WARNING:  qualField:time qualOperator:>= qualValue:2011-02-11 00:00:00
        #WARNING:  qualField:time qualOperator:<= qualValue:2011-02-12 23:59:59
        log_to_postgres("dir:"+os.getcwd())
        os.chdir("/Users/rpsdev/externalization")
        log_to_postgres("dir:"+os.getcwd())

        #cov_path = self.cov_path[:len(self.cov_path)-len(self.cov_id)]

        log_to_postgres("LOADING Coverage At Path: "+self.cov_path, WARNING)
        log_to_postgres("LOADING Coverage ID: "+self.cov_id, WARNING)
        cov_available = False 
        try:
            log_to_postgres("LOADING Coverage", WARNING)
            cov = SimplexCoverage.load(self.cov_path)
            cov_available = True 
            log_to_postgres("Cov Type:"+type(cov))
        except Exception, e:
            log_to_postgres("failed to load coverage...:" + str(e),WARNING)
Ejemplo n.º 9
0
    def cov_io(self, context, value_array, comp_val=None):
        pdict = ParameterDictionary()
        time = ParameterContext(
            name='time', param_type=QuantityType(value_encoding=np.float64))
        pdict.add_context(context)
        pdict.add_context(time, True)
        # Construct temporal and spatial Coordinate Reference System objects
        tcrs = CRS([AxisTypeEnum.TIME])
        scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

        # Construct temporal and spatial Domain objects
        tdom = GridDomain(GridShape('temporal', [0]), tcrs,
                          MutabilityEnum.EXTENSIBLE)  # 1d (timeline)
        sdom = GridDomain(GridShape('spatial',
                                    [0]), scrs, MutabilityEnum.IMMUTABLE
                          )  # 0d spatial topology (station/trajectory)

        # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
        cov = SimplexCoverage('test_data',
                              create_guid(),
                              'sample coverage_model',
                              parameter_dictionary=pdict,
                              temporal_domain=tdom,
                              spatial_domain=sdom)
        self.addCleanup(shutil.rmtree, cov.persistence_dir)

        cov.insert_timesteps(len(value_array))
        cov.set_parameter_values('test',
                                 tdoa=slice(0, len(value_array)),
                                 value=value_array)
        comp_val = comp_val if comp_val is not None else value_array
        testval = cov.get_parameter_values('test')
        try:
            np.testing.assert_array_equal(testval, comp_val)
        except:
            print repr(value_array)
            raise
Ejemplo n.º 10
0
def ncstation2cov(save_coverage=False, in_memory=False):
    # Open the netcdf dataset
    ds = Dataset('test_data/usgs.nc')
    # Itemize the variable names that we want to include in the coverage
    var_names = ['time','lat','lon','z','streamflow','water_temperature',]

    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a ParameterContext object for each of the variables in the dataset and add them to the ParameterDictionaryl
    for v in var_names:
        var = ds.variables[v]

        ptype = QuantityType(var.dtype.char)
        if v in ('lat','lon','z'):
            ptype=ConstantType(ptype)

        pcontext = ParameterContext(v, param_type=ptype)
        if 'units' in var.ncattrs():
            pcontext.uom = var.getncattr('units')
        if 'long_name' in var.ncattrs():
            pcontext.description = var.getncattr('long_name')
        if '_FillValue' in var.ncattrs():
            pcontext.fill_value = var.getncattr('_FillValue')

        # Set the axis for the coordinate parameters
        if v == 'time':
            pcontext.variability = VariabilityEnum.TEMPORAL
            pcontext.axis = AxisTypeEnum.TIME
        elif v == 'lat':
            pcontext.axis = AxisTypeEnum.LAT
        elif v == 'lon':
            pcontext.axis = AxisTypeEnum.LON
        elif v == 'z':
            pcontext.axis = AxisTypeEnum.HEIGHT

        pdict.add_context(pcontext)

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS.standard_temporal()
    scrs = CRS.lat_lon_height()

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 1d spatial topology (station/trajectory)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample station coverage_model', pdict, tdom, sdom, in_memory)

    # Insert the timesteps (automatically expands other arrays)
    tvar=ds.variables['time']
    scov.insert_timesteps(tvar.size)

    # Add data to the parameters - NOT using setters at this point, direct assignment to arrays
    for v in var_names:
        var = ds.variables[v]
        var.set_auto_maskandscale(False)

        if v in ('lat','lon','z'):
            scov._range_value[v][0] = make_range_expr(var[0])
        else:
            scov._range_value[v][:] = var[:]

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/usgs.cov')

    return scov
Ejemplo n.º 11
0
def ncgrid2cov(save_coverage=False, in_memory=False):
    if True:
        raise NotImplementedError('Multidimensional support is not available at this time')
    # Open the netcdf dataset
    ds = Dataset('test_data/ncom.nc')
    # Itemize the variable names that we want to include in the coverage
    var_names = ['time','lat','lon','depth','water_u','water_v','salinity','water_temp',]

    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a ParameterContext object for each of the variables in the dataset and add them to the ParameterDictionary
    for v in var_names:
        var = ds.variables[v]

        pcontext = ParameterContext(v, param_type=QuantityType(value_encoding=ds.variables[v].dtype.char))
        if 'units' in var.ncattrs():
            pcontext.uom = var.getncattr('units')
        if 'long_name' in var.ncattrs():
            pcontext.description = var.getncattr('long_name')
        if '_FillValue' in var.ncattrs():
            pcontext.fill_value = var.getncattr('_FillValue')

        # Set the axis for the coordinate parameters
        if v == 'time':
            pcontext.variability = VariabilityEnum.TEMPORAL
            pcontext.axis = AxisTypeEnum.TIME
        elif v == 'lat':
            pcontext.axis = AxisTypeEnum.LAT
        elif v == 'lon':
            pcontext.axis = AxisTypeEnum.LON
        elif v == 'depth':
            pcontext.axis = AxisTypeEnum.HEIGHT

        pdict.add_context(pcontext)

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT, AxisTypeEnum.HEIGHT])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal'), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [34,57,89]), scrs, MutabilityEnum.IMMUTABLE) # 3d spatial topology (grid)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample grid coverage_model', pdict, tdom, sdom, in_memory)

    # Insert the timesteps (automatically expands other arrays)
    tvar=ds.variables['time']
    scov.insert_timesteps(tvar.size)

    # Add data to the parameters - NOT using setters at this point, direct assignment to arrays
    for v in var_names:
        log.debug('Assign values to %s', v)
        var = ds.variables[v]
        var.set_auto_maskandscale(False)
        arr = var[:]
        # TODO: Sort out how to leave these sparse internally and only broadcast during read
        if v == 'depth':
            z,_,_ = my_meshgrid(arr,np.zeros([57]),np.zeros([89]),indexing='ij',sparse=True)
            scov._range_value[v][:] = z
        elif v == 'lat':
            _,y,_ = my_meshgrid(np.zeros([34]),arr,np.zeros([89]),indexing='ij',sparse=True)
            scov._range_value[v][:] = y
        elif v == 'lon':
            _,_,x = my_meshgrid(np.zeros([34]),np.zeros([57]),arr,indexing='ij',sparse=True)
            scov._range_value[v][:] = x
        else:
            scov._range_value[v][:] = var[:]

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/ncom.cov')

    return scov
Ejemplo n.º 12
0
def nospatialcov(save_coverage=False, in_memory=False):
    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)

    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    t_ctxt = ParameterContext('quantity_time', param_type=QuantityType(value_encoding=np.dtype('int64')), variability=VariabilityEnum.TEMPORAL)
    t_ctxt.axis = AxisTypeEnum.TIME
    t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(t_ctxt)

    quant_ctxt = ParameterContext('quantity', param_type=QuantityType(value_encoding=np.dtype('float32')))
    quant_ctxt.long_name = 'example of a parameter of type QuantityType'
    quant_ctxt.uom = 'degree_Celsius'
    pdict.add_context(quant_ctxt)

    const_ctxt = ParameterContext('constant', param_type=ConstantType())
    const_ctxt.long_name = 'example of a parameter of type ConstantType'
    pdict.add_context(const_ctxt)

    arr_ctxt = ParameterContext('array', param_type=ArrayType())
    arr_ctxt.long_name = 'example of a parameter of type ArrayType with base_type ndarray (resolves to \'object\')'
    pdict.add_context(arr_ctxt)

    arr2_ctxt = ParameterContext('array2', param_type=ArrayType())
    arr2_ctxt.long_name = 'example of a parameter of type ArrayType with base_type object'
    pdict.add_context(arr2_ctxt)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample coverage_model', pdict, temporal_domain=tdom, in_memory_storage=in_memory)

    # Insert some timesteps (automatically expands other arrays)
    nt = 20
    scov.insert_timesteps(nt)

    # Add data for each parameter
    scov.set_parameter_values('quantity_time', value=np.arange(nt))
    scov.set_parameter_values('quantity', value=np.random.random_sample(nt)*(26-23)+23)
    scov.set_parameter_values('constant', value=20)

    arrval = []
    arr2val = []
    for x in xrange(nt): # One value (which IS an array) for each member of the domain
        arrval.append(np.random.bytes(np.random.randint(1,20)))
        arr2val.append(np.random.random_sample(np.random.randint(1,10)))
    scov.set_parameter_values('array', value=arrval)
    scov.set_parameter_values('array2', value=arr2val)

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/ptypes.cov')

    return scov
Ejemplo n.º 13
0
def samplecov2(save_coverage=False, in_memory=False):
    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.dtype('int64')), variability=VariabilityEnum.TEMPORAL)
    t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(t_ctxt, is_temporal=True)

    lat_ctxt = ParameterContext('lat', param_type=ConstantType(), variability=VariabilityEnum.NONE)
    lat_ctxt.axis = AxisTypeEnum.LAT
    lat_ctxt.uom = 'degree_north'
    pdict.add_context(lat_ctxt)

    lon_ctxt = ParameterContext('lon', param_type=ConstantType(), variability=VariabilityEnum.NONE)
    lon_ctxt.axis = AxisTypeEnum.LON
    lon_ctxt.uom = 'degree_east'
    pdict.add_context(lon_ctxt)

    temp_ctxt = ParameterContext('temp', param_type=QuantityType(value_encoding=np.dtype('float32')))
    temp_ctxt.uom = 'degree_Celsius'
    pdict.add_context(temp_ctxt)

    cond_ctxt = ParameterContext('conductivity', param_type=QuantityType(value_encoding=np.dtype('float32')))
    cond_ctxt.uom = 'unknown'
    pdict.add_context(cond_ctxt)

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

    # Construct temporal and spatial Domain objects
    nt = 20
    tdom = GridDomain(GridShape('temporal', [nt]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 0d spatial topology (station/trajectory)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample coverage_model', pdict, tdom, sdom, in_memory)

    # Insert some timesteps (automatically expands other arrays)
#    scov.insert_timesteps(10)

    # Add data for each parameter
    scov.set_parameter_values('time', value=np.arange(nt))
    scov.set_parameter_values('lat', value=make_range_expr(45.32))
    scov.set_parameter_values('lon', value=make_range_expr(-71.11))
    # make a random sample of 10 values between 23 and 26
    # Ref: http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.random_sample.html#numpy.random.random_sample
    # --> To sample  multiply the output of random_sample by (b-a) and add a
    tvals=np.random.random_sample(nt)*(26-23)+23
    scov.set_parameter_values('temp', value=tvals)
    scov.set_parameter_values('conductivity', value=np.random.random_sample(nt)*(110-90)+90)

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/sample2.cov')

    return scov
Ejemplo n.º 14
0
    def repair(self,
               backup=True,
               copy_over=True,
               keep_temp=False,
               reanalyze=False,
               analyze_bricks=False,
               detailed_analysis=False):
        """
        Heavy repair tool that recreates a blank persisted Coverage from the broken coverage's
        original construction parameters, then reconstructs the Master and Parameter metadata
        files by inspection of the ION objects and "valid" brick files.
        @return:
        """
        if self._ar is None or reanalyze:
            self._ar = self._do_analysis(analyze_bricks=analyze_bricks,
                                         detailed_analysis=detailed_analysis)

        if self._ar.is_corrupt:
            if len(self._ar.get_brick_corruptions()) > 0:
                raise NotImplementedError(
                    'Brick corruption.  Cannot repair at this time!!!')
            else:
                # Repair the Master and Parameter metadata files

                # Need the ParameterDictionary, TemporalDomain and SpatialDomain
                pdict = ParameterDictionary.load(
                    self._dso.parameter_dictionary)
                tdom = GridDomain.load(self._dso.temporal_domain)
                sdom = GridDomain.load(self._dso.spatial_domain)

                # Set up the working directory for the recovered coverage
                tempcov_dir = tempfile.mkdtemp('covs')

                # Create the temporary Coverage
                tempcov = SimplexCoverage(root_dir=tempcov_dir,
                                          persistence_guid=self._guid,
                                          name=self._guid,
                                          parameter_dictionary=pdict,
                                          spatial_domain=sdom,
                                          temporal_domain=tdom)
                # Handle to persistence layer for tempcov
                pl = tempcov._persistence_layer

                # Set up the original and temporary coverage path strings
                orig_dir = os.path.join(self.cov_pth, self._guid)
                temp_dir = os.path.join(tempcov.persistence_dir,
                                        tempcov.persistence_guid)

                # Insert same number of timesteps into temporary coverage as in broken coverage
                brick_domains_new, new_brick_list, brick_list_spans, tD, bD, min_data_bound, max_data_bound = self.inspect_bricks(
                    self.cov_pth, self._guid, 'time')
                empty_cov = brick_list_spans is None  # If None, there are no brick files --> no timesteps, empty coverage!
                if not empty_cov:  # If None, there are no brick files --> no timesteps, empty coverage!
                    bls = [s.value for s in brick_list_spans]
                    maxes = [sum(b[3]) for b in new_brick_list.values()]
                    tempcov.insert_timesteps(sum(maxes))

                    # Replace metadata is the Master file
                    pl.master_manager.brick_domains = brick_domains_new
                    pl.master_manager.brick_list = new_brick_list

                    # Repair ExternalLinks to brick files
                    f = h5py.File(pl.master_manager.file_path, 'a')
                    for param_name in pdict.keys():
                        del f[param_name]
                        f.create_group(param_name)
                        for brick in bls:
                            link_path = '/{0}/{1}'.format(param_name, brick[0])
                            brick_file_name = '{0}.hdf5'.format(brick[0])
                            brick_rel_path = os.path.join(
                                pl.parameter_metadata[param_name].root_dir.
                                replace(tempcov.persistence_dir,
                                        '.'), brick_file_name)
                            log.debug('link_path: %s', link_path)
                            log.debug('brick_rel_path: %s', brick_rel_path)
                            pl.master_manager.add_external_link(
                                link_path, brick_rel_path, brick[0])

                pl.flush_values()
                pl.flush()
                tempcov.close()

                # Remove 'rtree' dataset from Master file if it already exists (post domain expansion)
                # to make way for reconstruction
                f = h5py.File(pl.master_manager.file_path, 'a')
                if 'rtree' in f.keys():
                    del f['rtree']
                f.close()

                # Reconstruct 'rtree' dataset
                # Open temporary Coverage and PersistenceLayer objects
                fixed_cov = AbstractCoverage.load(tempcov.persistence_dir,
                                                  mode='a')
                pl_fixed = fixed_cov._persistence_layer

                # Call update_rtree for each brick using PersistenceLayer builtin
                brick_count = 0

                if not empty_cov:
                    for brick in bls:
                        rtree_extents, brick_extents, brick_active_size = pl_fixed.calculate_extents(
                            brick[1][1], bD, tD)
                        pl_fixed.master_manager.update_rtree(brick_count,
                                                             rtree_extents,
                                                             obj=brick[0])
                        brick_count += 1

                # Update parameter_bounds property based on each parameter's brick data using deep inspection
                valid_bounds_types = [
                    'BooleanType', 'ConstantType', 'QuantityType',
                    'ConstantRangeType'
                ]

                if not empty_cov:
                    for param in pdict.keys():
                        if pdict.get_context(
                                param
                        ).param_type.__class__.__name__ in valid_bounds_types:
                            brick_domains_new, new_brick_list, brick_list_spans, tD, bD, min_data_bound, max_data_bound = self.inspect_bricks(
                                self.cov_pth, self._guid, param)
                            # Update the metadata
                            pl_fixed.update_parameter_bounds(
                                param, [min_data_bound, max_data_bound])
                pl_fixed.flush()
                fixed_cov.close()

                # Create backup copy of original Master and Parameter files
                if backup:
                    import datetime
                    orig_master_file = os.path.join(
                        self.cov_pth, '{0}_master.hdf5'.format(self._guid))

                    # Generate the timestamp
                    tstamp_format = '%Y%m%d%H%M%S'
                    tstamp = datetime.datetime.now().strftime(tstamp_format)

                    backup_master_file = os.path.join(
                        self.cov_pth,
                        '{0}_master.{1}.hdf5'.format(self._guid, tstamp))

                    shutil.copy2(orig_master_file, backup_master_file)

                    for param in pdict.keys():
                        param_orig = os.path.join(orig_dir, param,
                                                  '{0}.hdf5'.format(param))
                        param_backup = os.path.join(
                            orig_dir, param,
                            '{0}.{1}.hdf5'.format(param, tstamp))
                        shutil.copy2(param_orig, param_backup)

                # Copy Master and Parameter metadata files back to original/broken coverage (cov_pth) location
                if copy_over == True:
                    shutil.copy2(
                        os.path.join(tempcov.persistence_dir,
                                     '{0}_master.hdf5'.format(self._guid)),
                        os.path.join(self.cov_pth,
                                     '{0}_master.hdf5'.format(self._guid)))
                    for param in pdict.keys():
                        shutil.copy2(
                            os.path.join(temp_dir, param,
                                         '{0}.hdf5'.format(param)),
                            os.path.join(orig_dir, param,
                                         '{0}.hdf5'.format(param)))

                # Reanalyze the repaired coverage
                self._ar = self._do_analysis(analyze_bricks=True)

                # Verify repair worked, clean up if not
                if self._ar.is_corrupt:
                    # If the files were backed up then revert
                    if backup:
                        # Remove backed up files and clean up the repair attempt
                        log.info(
                            'Repair attempt failed.  Reverting to pre-repair state.'
                        )
                        # Use backup copy to replace post-repair file.
                        shutil.copy2(backup_master_file, orig_master_file)
                        # Delete the backup
                        os.remove(backup_master_file)

                        # Iterate over parameters and revert to pre-repair state
                        for param in pdict.keys():
                            param_orig = os.path.join(orig_dir, param,
                                                      '{0}.hdf5'.format(param))
                            param_backup = os.path.join(
                                orig_dir, param,
                                '{0}.{1}.hdf5'.format(param, tstamp))
                            # Use backup copy to replace post-repair file.
                            shutil.copy2(param_backup, param_orig)
                            # Delete the backup
                            os.remove(param_backup)

                    raise ValueError(
                        'Coverage repair failed! Revert to stored backup version, if possible.'
                    )

                # Remove temporary coverage
                if keep_temp == False:
                    shutil.rmtree(tempcov_dir)
                else:
                    return tempcov_dir
        else:
            log.info('Coverage is not corrupt, nothing to repair!')
Ejemplo n.º 15
0
    def get_dataset_xml(self, coverage_path, product_name=''):
        #http://coastwatch.pfeg.noaa.gov/erddap/download/setupDatasetsXml.html
        result = ''
        paths = os.path.split(coverage_path)
        cov = SimplexCoverage.load(coverage_path)
        doc = xml.dom.minidom.Document()

        #erd_type_map = {'d':'double', 'f':"float", 'h':'short', 'i':'int', 'l':'int', 'q':'int', 'b':'byte', 'b':'char', 'S':'String'}

        #Get lists of variables with unique sets of dimensions.
        #Datasets can only have variables with the same sets of dimensions

        if not cov.list_parameters():
            raise BadRequest(
                'Attempting to register an empty dataset. The coverage (%s) has no definition.\n%s'
                % (coverage_path, cov))

        datasets = {}
        for key in cov.list_parameters():
            pc = cov.get_parameter_context(key)

            #if not isinstance(pc.param_type, QuantityType):
            #    continue

            param = cov.get_parameter(key)
            dims = (cov.temporal_parameter_name, )
            if len(param.shape) == 2:
                dims = (cov.temporal_parameter_name,
                        cov.spatial_domain.shape.name)

            if not dims in datasets.keys():
                datasets[dims] = []

            datasets[dims].append(key)

        index = 0
        if not datasets:
            raise BadRequest(
                'Attempting to register a dimensionless dataset. The coverage (%s) has no dimension(s).\n%s'
                % (coverage_path, cov))

        for dims, vars in datasets.iteritems():
            erd_name_map = self.get_errdap_name_map(vars)

            if len(vars) == 1:
                raise BadRequest(
                    'A dataset needs a proper range, not just the temporal dimension. %s\n%s'
                    % (coverage_path, cov))

            if not (len(dims) == 1 and dims[0] == vars[0]):
                dataset_element = doc.createElement('dataset')
                dataset_element.setAttribute('type', 'EDDGridFromDap')
                dataset_element.setAttribute('datasetID',
                                             '{0}_{1}'.format(paths[1], index))
                dataset_element.setAttribute('active', 'True')

                source_element = doc.createElement('sourceUrl')
                text_node = doc.createTextNode(self.pydap_url + paths[1])
                source_element.appendChild(text_node)
                dataset_element.appendChild(source_element)

                reload_element = doc.createElement('reloadEveryNMinutes')
                text_node = doc.createTextNode('5')
                reload_element.appendChild(text_node)
                dataset_element.appendChild(reload_element)

                add_attributes_element = doc.createElement('addAttributes')

                atts = {}
                atts['title'] = product_name or urllib.unquote(cov.name)
                atts['infoUrl'] = self.pydap_url + paths[1]
                atts['institution'] = 'OOI'
                atts[
                    'Conventions'] = "COARDS, CF-1.6, Unidata Dataset Discovery v1.0"
                atts['license'] = '[standard]'
                atts['summary'] = cov.name
                atts['cdm_data_type'] = 'Grid'
                atts['subsetVariables'] = ','.join(
                    [erd_name_map[v] for v in vars])
                atts['standard_name_vocabulary'] = 'CF-12'

                try:
                    lat_min, lat_max = cov.get_data_bounds("lat")
                    atts['geospatial_lat_max'] = str(lat_max)
                    atts['geospatial_lat_min'] = str(lat_min)
                    pc = cov.get_parameter_context("lat")
                    atts['geospatial_lat_units'] = str(pc.uom)

                    lon_min, lon_max = cov.get_data_bounds("lon")
                    atts['geospatial_lon_max'] = str(lon_max)
                    atts['geospatial_lon_min'] = str(lon_min)
                    pc = cov.get_parameter_context("lon")
                    atts['geospatial_lon_units'] = str(pc.uom)
                except:
                    #silently fail and just don't fill attributes
                    pass

                for key, val in atts.iteritems():
                    att_element = doc.createElement('att')
                    att_element.setAttribute('name', key)
                    text_node = doc.createTextNode(val)
                    att_element.appendChild(text_node)
                    add_attributes_element.appendChild(att_element)

                if len(add_attributes_element.childNodes) > 0:
                    dataset_element.appendChild(add_attributes_element)

                for var_name in vars:
                    param = cov.get_parameter(var_name)
                    var = param.context

                    units = "unknown"
                    try:
                        units = var.uom
                    except:
                        pass
                    if units is None:
                        units = "unknown"

                    #if len(param.shape) >=1 and not param.is_coordinate: #dataVariable
                    data_element = doc.createElement('dataVariable')
                    source_name_element = doc.createElement('sourceName')
                    text_node = doc.createTextNode(var.name)
                    source_name_element.appendChild(text_node)
                    data_element.appendChild(source_name_element)

                    destination_name_element = doc.createElement(
                        'destinationName')
                    text_node = doc.createTextNode(erd_name_map[var.name])
                    destination_name_element.appendChild(text_node)
                    data_element.appendChild(destination_name_element)

                    add_attributes_element = doc.createElement('addAttributes')
                    if not var.attributes is None:
                        for key, val in var.attributes.iteritems():
                            att_element = doc.createElement('att')
                            att_element.setAttribute('name', key)
                            text_node = doc.createTextNode(val)
                            att_element.appendChild(text_node)
                            add_attributes_element.appendChild(att_element)

                    att_element = doc.createElement('att')
                    att_element.setAttribute('name', 'ioos_category')
                    text_node = doc.createTextNode(
                        self.get_ioos_category(var.name, units))
                    att_element.appendChild(text_node)
                    add_attributes_element.appendChild(att_element)

                    att_element = doc.createElement('att')
                    att_element.setAttribute('name', 'long_name')
                    long_name = ""
                    if var.long_name is not None:
                        long_name = var.long_name
                        text_node = doc.createTextNode(long_name)
                        att_element.appendChild(text_node)
                        add_attributes_element.appendChild(att_element)

                    att_element = doc.createElement('att')
                    standard_name = ""
                    if var.standard_name is not None:
                        standard_name = var.standard_name
                        att_element.setAttribute('name', 'standard_name')
                        text_node = doc.createTextNode(standard_name)
                        att_element.appendChild(text_node)
                        add_attributes_element.appendChild(att_element)

                    att_element = doc.createElement('att')
                    att_element.setAttribute('name', 'units')
                    text_node = doc.createTextNode(units)
                    att_element.appendChild(text_node)
                    add_attributes_element.appendChild(att_element)

                    data_element.appendChild(add_attributes_element)
                    dataset_element.appendChild(data_element)

                index += 1
                #bug with prettyxml
                #http://ronrothman.com/public/leftbraned/xml-dom-minidom-toprettyxml-and-silly-whitespace/
                #result += dataset_element.toprettyxml() + '\n'
                result += dataset_element.toxml() + '\n'

        cov.close()

        return result
Ejemplo n.º 16
0
    def repair(
        self,
        backup=True,
        copy_over=True,
        keep_temp=False,
        reanalyze=False,
        analyze_bricks=False,
        detailed_analysis=False,
    ):
        """
        Heavy repair tool that recreates a blank persisted Coverage from the broken coverage's
        original construction parameters, then reconstructs the Master and Parameter metadata
        files by inspection of the ION objects and "valid" brick files.
        @return:
        """
        if self._ar is None or reanalyze:
            self._ar = self._do_analysis(analyze_bricks=analyze_bricks, detailed_analysis=detailed_analysis)

        if self._ar.is_corrupt:
            if len(self._ar.get_brick_corruptions()) > 0:
                raise NotImplementedError("Brick corruption.  Cannot repair at this time!!!")
            else:
                # Repair the Master and Parameter metadata files

                # Need the ParameterDictionary, TemporalDomain and SpatialDomain
                pdict = ParameterDictionary.load(self._dso.parameter_dictionary)
                tdom = GridDomain.load(self._dso.temporal_domain)
                sdom = GridDomain.load(self._dso.spatial_domain)

                # Set up the working directory for the recovered coverage
                tempcov_dir = tempfile.mkdtemp("covs")

                # Create the temporary Coverage
                tempcov = SimplexCoverage(
                    root_dir=tempcov_dir,
                    persistence_guid=self._guid,
                    name=self._guid,
                    parameter_dictionary=pdict,
                    spatial_domain=sdom,
                    temporal_domain=tdom,
                )
                # Handle to persistence layer for tempcov
                pl = tempcov._persistence_layer

                # Set up the original and temporary coverage path strings
                orig_dir = os.path.join(self.cov_pth, self._guid)
                temp_dir = os.path.join(tempcov.persistence_dir, tempcov.persistence_guid)

                # Insert same number of timesteps into temporary coverage as in broken coverage
                brick_domains_new, new_brick_list, brick_list_spans, tD, bD, min_data_bound, max_data_bound = self.inspect_bricks(
                    self.cov_pth, self._guid, "time"
                )
                empty_cov = (
                    brick_list_spans is None
                )  # If None, there are no brick files --> no timesteps, empty coverage!
                if not empty_cov:  # If None, there are no brick files --> no timesteps, empty coverage!
                    bls = [s.value for s in brick_list_spans]
                    maxes = [sum(b[3]) for b in new_brick_list.values()]

                    # Replace metadata is the Master file
                    pl.master_manager.brick_domains = brick_domains_new
                    pl.master_manager.brick_list = new_brick_list

                    # Repair ExternalLinks to brick files
                    with HDFLockingFile(pl.master_manager.file_path, "r+") as f:
                        for param_name in pdict.keys():
                            del f[param_name]
                            f.create_group(param_name)
                    for param_name in pdict.keys():
                        for brick in bls:
                            link_path = "/{0}/{1}".format(param_name, brick[0])
                            brick_file_name = "{0}.hdf5".format(brick[0])
                            brick_rel_path = os.path.join(
                                pl.parameter_metadata[param_name].root_dir.replace(tempcov.persistence_dir, "."),
                                brick_file_name,
                            )
                            log.debug("link_path: %s", link_path)
                            log.debug("brick_rel_path: %s", brick_rel_path)
                            pl.master_manager.add_external_link(link_path, brick_rel_path, brick[0])

                pl.flush_values()
                pl.flush()
                tempcov.close()

                # Remove 'rtree' dataset from Master file if it already exists (post domain expansion)
                # to make way for reconstruction
                with HDFLockingFile(pl.master_manager.file_path, "r+") as f:
                    if "rtree" in f.keys():
                        del f["rtree"]

                # Reconstruct 'rtree' dataset
                # Open temporary Coverage and PersistenceLayer objects
                fixed_cov = AbstractCoverage.load(tempcov.persistence_dir, mode="r+")
                pl_fixed = fixed_cov._persistence_layer

                # Call update_rtree for each brick using PersistenceLayer builtin
                brick_count = 0

                if not empty_cov:
                    for brick in bls:
                        rtree_extents, brick_extents, brick_active_size = pl_fixed.calculate_extents(
                            brick[1][1], bD, tD
                        )
                        pl_fixed.master_manager.update_rtree(brick_count, rtree_extents, obj=brick[0])
                        brick_count += 1

                # Update parameter_bounds property based on each parameter's brick data using deep inspection
                valid_bounds_types = ["BooleanType", "ConstantType", "QuantityType", "ConstantRangeType"]

                if not empty_cov:
                    for param in pdict.keys():
                        if pdict.get_context(param).param_type.__class__.__name__ in valid_bounds_types:
                            brick_domains_new, new_brick_list, brick_list_spans, tD, bD, min_data_bound, max_data_bound = self.inspect_bricks(
                                self.cov_pth, self._guid, param
                            )
                            # Update the metadata
                            pl_fixed.update_parameter_bounds(param, [min_data_bound, max_data_bound])
                pl_fixed.flush()
                fixed_cov.close()

                # Create backup copy of original Master and Parameter files
                if backup:
                    import datetime

                    orig_master_file = os.path.join(self.cov_pth, "{0}_master.hdf5".format(self._guid))

                    # Generate the timestamp
                    tstamp_format = "%Y%m%d%H%M%S"
                    tstamp = datetime.datetime.now().strftime(tstamp_format)

                    backup_master_file = os.path.join(self.cov_pth, "{0}_master.{1}.hdf5".format(self._guid, tstamp))

                    shutil.copy2(orig_master_file, backup_master_file)

                    for param in pdict.keys():
                        param_orig = os.path.join(orig_dir, param, "{0}.hdf5".format(param))
                        param_backup = os.path.join(orig_dir, param, "{0}.{1}.hdf5".format(param, tstamp))
                        shutil.copy2(param_orig, param_backup)

                # Copy Master and Parameter metadata files back to original/broken coverage (cov_pth) location
                if copy_over == True:
                    shutil.copy2(
                        os.path.join(tempcov.persistence_dir, "{0}_master.hdf5".format(self._guid)),
                        os.path.join(self.cov_pth, "{0}_master.hdf5".format(self._guid)),
                    )
                    for param in pdict.keys():
                        shutil.copy2(
                            os.path.join(temp_dir, param, "{0}.hdf5".format(param)),
                            os.path.join(orig_dir, param, "{0}.hdf5".format(param)),
                        )

                # Reanalyze the repaired coverage
                self._ar = self._do_analysis(analyze_bricks=True)

                # Verify repair worked, clean up if not
                if self._ar.is_corrupt:
                    # If the files were backed up then revert
                    if backup:
                        # Remove backed up files and clean up the repair attempt
                        log.info("Repair attempt failed.  Reverting to pre-repair state.")
                        # Use backup copy to replace post-repair file.
                        shutil.copy2(backup_master_file, orig_master_file)
                        # Delete the backup
                        os.remove(backup_master_file)

                        # Iterate over parameters and revert to pre-repair state
                        for param in pdict.keys():
                            param_orig = os.path.join(orig_dir, param, "{0}.hdf5".format(param))
                            param_backup = os.path.join(orig_dir, param, "{0}.{1}.hdf5".format(param, tstamp))
                            # Use backup copy to replace post-repair file.
                            shutil.copy2(param_backup, param_orig)
                            # Delete the backup
                            os.remove(param_backup)

                    raise ValueError("Coverage repair failed! Revert to stored backup version, if possible.")

                # Remove temporary coverage
                if keep_temp == False:
                    shutil.rmtree(tempcov_dir)
                else:
                    return tempcov_dir
        else:
            log.info("Coverage is not corrupt, nothing to repair!")
Ejemplo n.º 17
0
def ptypescov(save_coverage=False, in_memory=False):
    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 0d spatial topology (station/trajectory)

    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    quant_t_ctxt = ParameterContext('quantity_time', param_type=QuantityType(value_encoding=np.dtype('int64')), variability=VariabilityEnum.TEMPORAL)
    quant_t_ctxt.axis = AxisTypeEnum.TIME
    quant_t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(quant_t_ctxt)

    cnst_int_ctxt = ParameterContext('const_int', param_type=ConstantType(QuantityType(value_encoding=np.dtype('int32'))), variability=VariabilityEnum.NONE)
    cnst_int_ctxt.long_name = 'example of a parameter of type ConstantType, base_type int32'
    cnst_int_ctxt.axis = AxisTypeEnum.LAT
    cnst_int_ctxt.uom = 'degree_north'
    pdict.add_context(cnst_int_ctxt)

    cnst_flt_ctxt = ParameterContext('const_float', param_type=ConstantType(), variability=VariabilityEnum.NONE)
    cnst_flt_ctxt.long_name = 'example of a parameter of type QuantityType, base_type float (default)'
    cnst_flt_ctxt.axis = AxisTypeEnum.LON
    cnst_flt_ctxt.uom = 'degree_east'
    pdict.add_context(cnst_flt_ctxt)

#    func_ctxt = ParameterContext('function', param_type=FunctionType(QuantityType(value_encoding=np.dtype('float32'))))
#    func_ctxt.long_name = 'example of a parameter of type FunctionType'
#    pdict.add_context(func_ctxt)

    quant_ctxt = ParameterContext('quantity', param_type=QuantityType(value_encoding=np.dtype('float32')))
    quant_ctxt.long_name = 'example of a parameter of type QuantityType'
    quant_ctxt.uom = 'degree_Celsius'
    pdict.add_context(quant_ctxt)

    arr_ctxt = ParameterContext('array', param_type=ArrayType())
    arr_ctxt.long_name = 'example of a parameter of type ArrayType, will be filled with variable-length \'byte-string\' data'
    pdict.add_context(arr_ctxt)

    rec_ctxt = ParameterContext('record', param_type=RecordType())
    rec_ctxt.long_name = 'example of a parameter of type RecordType, will be filled with dictionaries'
    pdict.add_context(rec_ctxt)

    # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
    scov = SimplexCoverage('test_data', create_guid(), 'sample coverage_model', pdict, tdom, sdom, in_memory)

    # Insert some timesteps (automatically expands other arrays)
    nt = 20
    scov.insert_timesteps(nt)

    # Add data for each parameter
    scov.set_parameter_values('quantity_time', value=np.arange(nt))
    scov.set_parameter_values('const_int', value=45.32) # Set a constant directly, with incorrect data type (fixed under the hood)
    scov.set_parameter_values('const_float', value=make_range_expr(-71.11)) # Set with a properly formed constant expression
    scov.set_parameter_values('quantity', value=np.random.random_sample(nt)*(26-23)+23)

#    # Setting three range expressions such that indices 0-2 == 10, 3-7 == 15 and >=8 == 20
#    scov.set_parameter_values('function', value=make_range_expr(10, 0, 3, min_incl=True, max_incl=False, else_val=-999.9))
#    scov.set_parameter_values('function', value=make_range_expr(15, 3, 8, min_incl=True, max_incl=False, else_val=-999.9))
#    scov.set_parameter_values('function', value=make_range_expr(20, 8, min_incl=True, max_incl=False, else_val=-999.9))

    arrval = []
    recval = []
    letts='abcdefghijklmnopqrstuvwxyz'
    while len(letts) < nt:
        letts += 'abcdefghijklmnopqrstuvwxyz'
    for x in xrange(nt):
        arrval.append(np.random.bytes(np.random.randint(1,20))) # One value (which is a byte string) for each member of the domain
        d = {letts[x]: letts[x:]}
        recval.append(d) # One value (which is a dict) for each member of the domain
    scov.set_parameter_values('array', value=arrval)
    scov.set_parameter_values('record', value=recval)

    if in_memory and save_coverage:
        SimplexCoverage.pickle_save(scov, 'test_data/ptypes.cov')

    return scov
Ejemplo n.º 18
0
    def get_dataset_xml(self, coverage_path, product_name=''):
        #http://coastwatch.pfeg.noaa.gov/erddap/download/setupDatasetsXml.html
        result = ''
        paths = os.path.split(coverage_path)
        cov = SimplexCoverage.load(coverage_path)
        doc = xml.dom.minidom.Document()
        
        #erd_type_map = {'d':'double', 'f':"float", 'h':'short', 'i':'int', 'l':'int', 'q':'int', 'b':'byte', 'b':'char', 'S':'String'} 
        
        #Get lists of variables with unique sets of dimensions.
        #Datasets can only have variables with the same sets of dimensions

        if not cov.list_parameters():
            raise BadRequest('Attempting to register an empty dataset. The coverage (%s) has no definition.\n%s' %(coverage_path, cov))

        datasets = {}
        for key in cov.list_parameters():
            pc = cov.get_parameter_context(key)
            
            #if not isinstance(pc.param_type, QuantityType):
            #    continue

            param = cov.get_parameter(key)
            dims = (cov.temporal_parameter_name,)
            if len(param.shape) == 2:
                dims = (cov.temporal_parameter_name, cov.spatial_domain.shape.name)

            if not dims in datasets.keys():
                datasets[dims] = []
            

            datasets[dims].append(key)
        

        index = 0
        if not datasets:
            raise BadRequest('Attempting to register a dimensionless dataset. The coverage (%s) has no dimension(s).\n%s' %( coverage_path, cov))
        
        for dims, vars in datasets.iteritems():
            erd_name_map = self.get_errdap_name_map(vars) 
            
            if len(vars)==1:
                raise BadRequest('A dataset needs a proper range, not just the temporal dimension. %s\n%s' %( coverage_path, cov))

            if not (len(dims) == 1 and dims[0] == vars[0]):
                dataset_element = doc.createElement('dataset')
                dataset_element.setAttribute('type', 'EDDGridFromDap')
                dataset_element.setAttribute('datasetID', '{0}_{1}'.format(paths[1], index))
                dataset_element.setAttribute('active', 'True')

                source_element = doc.createElement('sourceUrl')
                text_node = doc.createTextNode(self.pydap_url + paths[1])
                source_element.appendChild(text_node)
                dataset_element.appendChild(source_element)

                reload_element = doc.createElement('reloadEveryNMinutes')
                text_node = doc.createTextNode('5')
                reload_element.appendChild(text_node)
                dataset_element.appendChild(reload_element)
                

                add_attributes_element = doc.createElement('addAttributes')

                atts = {}
                atts['title'] = product_name or urllib.unquote(cov.name)
                atts['infoUrl'] = self.pydap_url + paths[1]
                atts['institution'] = 'OOI'
                atts['Conventions'] = "COARDS, CF-1.6, Unidata Dataset Discovery v1.0"
                atts['license'] = '[standard]'
                atts['summary'] = cov.name
                atts['cdm_data_type'] = 'Grid'
                atts['subsetVariables'] = ','.join([erd_name_map[v] for v in vars])
                atts['standard_name_vocabulary'] = 'CF-12'
                
                try:
                    lat_min,lat_max = cov.get_data_bounds("lat")
                    atts['geospatial_lat_max'] = str(lat_max)
                    atts['geospatial_lat_min'] = str(lat_min)
                    pc = cov.get_parameter_context("lat")
                    atts['geospatial_lat_units'] = str(pc.uom)
                    
                    lon_min,lon_max = cov.get_data_bounds("lon")
                    atts['geospatial_lon_max'] = str(lon_max)
                    atts['geospatial_lon_min'] = str(lon_min)
                    pc = cov.get_parameter_context("lon")
                    atts['geospatial_lon_units'] = str(pc.uom)
                except:
                    #silently fail and just don't fill attributes
                    pass

                for key, val in atts.iteritems():
                    att_element = doc.createElement('att')
                    att_element.setAttribute('name', key)
                    text_node = doc.createTextNode(val)
                    att_element.appendChild(text_node)
                    add_attributes_element.appendChild(att_element)

                if len(add_attributes_element.childNodes) > 0:
                    dataset_element.appendChild(add_attributes_element)

                for var_name in vars:
                    var = cov.get_parameter_context(var_name)
                    
                    units = "unknown"
                    if hasattr(var,'uom') and var.uom:
                        units = var.uom

                    #if len(param.shape) >=1 and not param.is_coordinate: #dataVariable
                    data_element = doc.createElement('dataVariable')
                    source_name_element = doc.createElement('sourceName')
                    text_node = doc.createTextNode(var.name)
                    source_name_element.appendChild(text_node)
                    data_element.appendChild(source_name_element)

                    destination_name_element = doc.createElement('destinationName')
                    text_node = doc.createTextNode(erd_name_map[var.name])
                    destination_name_element.appendChild(text_node)
                    data_element.appendChild(destination_name_element)
                    
                    add_attributes_element = doc.createElement('addAttributes')
                    if var.ATTRS is not None:
                        for key in var.ATTRS:
                            if not hasattr(var,key):
                                continue
                            val = getattr(var,key)
                            att_element = doc.createElement('att')
                            att_element.setAttribute('name', key)
                            text_node = doc.createTextNode(val)
                            att_element.appendChild(text_node)
                            add_attributes_element.appendChild(att_element)

                    att_element = doc.createElement('att')
                    att_element.setAttribute('name', 'ioos_category')
                    text_node = doc.createTextNode(self.get_ioos_category(var.name, units))
                    att_element.appendChild(text_node)
                    add_attributes_element.appendChild(att_element)

                    att_element = doc.createElement('att')
                    att_element.setAttribute('name', 'long_name')
                    long_name = ""
                    if hasattr(var,'display_name') and var.display_name is not None:
                        long_name = var.display_name
                        text_node = doc.createTextNode(long_name)
                        att_element.appendChild(text_node)
                        add_attributes_element.appendChild(att_element)
                    
                    att_element = doc.createElement('att')
                    standard_name = ""
                    if hasattr(var,'standard_name') and var.standard_name is not None:
                        standard_name = var.standard_name
                        att_element.setAttribute('name', 'standard_name')
                        text_node = doc.createTextNode(standard_name)
                        att_element.appendChild(text_node)
                        add_attributes_element.appendChild(att_element)
                    

                    att_element = doc.createElement('att')
                    att_element.setAttribute('name', 'units')
                    text_node = doc.createTextNode(units)
                    att_element.appendChild(text_node)
                    add_attributes_element.appendChild(att_element)

                    data_element.appendChild(add_attributes_element)
                    dataset_element.appendChild(data_element)

                index += 1
                #bug with prettyxml
                #http://ronrothman.com/public/leftbraned/xml-dom-minidom-toprettyxml-and-silly-whitespace/
                #result += dataset_element.toprettyxml() + '\n'
                result += dataset_element.toxml() + '\n'

        cov.close()

        return result
Ejemplo n.º 19
0
def benchmark_value_setting(num_params=10, num_insertions=100, repeat=1, bulk_ts_insert=False):
    # Instantiate a ParameterDictionary
    pdict = ParameterDictionary()

    # Create a set of ParameterContext objects to define the parameters in the coverage, add each to the ParameterDictionary
    t_ctxt = ParameterContext('time', param_type=QuantityType(value_encoding=np.dtype('int64')))
    t_ctxt.axis = AxisTypeEnum.TIME
    t_ctxt.uom = 'seconds since 01-01-1970'
    pdict.add_context(t_ctxt)

    for i in xrange(num_params-1):
        pdict.add_context(ParameterContext('param_{0}'.format(i)))

    # Construct temporal and spatial Coordinate Reference System objects
    tcrs = CRS([AxisTypeEnum.TIME])
    scrs = CRS([AxisTypeEnum.LON, AxisTypeEnum.LAT])

    # Construct temporal and spatial Domain objects
    tdom = GridDomain(GridShape('temporal', [0]), tcrs, MutabilityEnum.EXTENSIBLE) # 1d (timeline)
    sdom = GridDomain(GridShape('spatial', [0]), scrs, MutabilityEnum.IMMUTABLE) # 0d spatial topology (station/trajectory)

    import time
    counter = 1
    insert_times = []
    per_rep_times = []
    full_time = time.time()
    for r in xrange(repeat):
        # Instantiate the SimplexCoverage providing the ParameterDictionary, spatial Domain and temporal Domain
        cov = SimplexCoverage('test_data', create_guid(), 'empty sample coverage_model', parameter_dictionary=pdict, temporal_domain=tdom, spatial_domain=sdom)

        rep_time = time.time()
        if bulk_ts_insert:
            cov.insert_timesteps(num_insertions)
        for x in xrange(num_insertions):
            in_time = time.time()
            if not bulk_ts_insert:
                cov.insert_timesteps(1)
            slice_ = slice(cov.num_timesteps - 1, None)
            cov.set_parameter_values('time', 1, tdoa=slice_)
            for i in xrange(num_params-1):
                cov.set_parameter_values('param_{0}'.format(i), 1.1, tdoa=slice_)

            in_time = time.time() - in_time
            insert_times.append(in_time)
            counter += 1
        rep_time = time.time() - rep_time
        per_rep_times.append(rep_time)

        cov.close()

    print 'Average Value Insertion Time (%s repetitions): %s' % (repeat, sum(insert_times) / len(insert_times))
    print 'Average Total Expansion Time (%s repetitions): %s' % (repeat, sum(per_rep_times) / len(per_rep_times))
    print 'Full Time (includes cov creation/closing): %s' % (time.time() - full_time)

    return cov