Ejemplo n.º 1
0
def moran_local(subquery, attr,
                w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I implementation for PL/Python
    Andy Eschbacher
    """

    # geometries with attributes that are null are ignored
    # resulting in a collection of not as near neighbors

    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(5)
    except plpy.SPIError, e:
        plpy.error('Analysis failed: %s' % e)
        return pu.empty_zipped_array(5)
Ejemplo n.º 2
0
def moran_local(subquery, attr,
                w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I implementation for PL/Python
    Andy Eschbacher
    """

    # geometries with attributes that are null are ignored
    # resulting in a collection of not as near neighbors

    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(5)
    except plpy.SPIError, e:
        plpy.error('Analysis failed: %s' % e)
        return pu.empty_zipped_array(5)
Ejemplo n.º 3
0
def moran_local_bv(subquery, attr1, attr2, permutations, geom_col, id_col,
                   w_type, num_ngbrs):
    """
        Moran's I (local) Bivariate (untested)
    """
    plpy.notice('** Constructing query')

    qvals = {
        "num_ngbrs": num_ngbrs,
        "attr1": attr1,
        "attr2": attr2,
        "subquery": subquery,
        "geom_col": geom_col,
        "id_col": id_col
    }

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(4)
    except plpy.SPIError:
        plpy.error("Error: areas of interest query failed, " \
                   "check input parameters")
        plpy.notice('** Query failed: "%s"' % query)
        return pu.empty_zipped_array(4)

    ## collect attributes
    attr1_vals = pu.get_attributes(result, 1)
    attr2_vals = pu.get_attributes(result, 2)

    # create weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_BV(attr1_vals,
                                        attr2_vals,
                                        weight,
                                        permutations=permutations)

    plpy.notice("len of Is: %d" % len(lisa.Is))

    # find clustering of significance
    lisa_sig = quad_position(lisa.q)

    plpy.notice('** Finished calculations')

    return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
Ejemplo n.º 4
0
def moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs,
                     permutations, geom_col, id_col):
    """
        Moran's I Local Rate
        Andy Eschbacher
    """
    # geometries with values that are null are ignored
    # resulting in a collection of not as near neighbors

    query = pu.construct_neighbor_query(
        w_type, {
            "id_col": id_col,
            "numerator": numerator,
            "denominator": denominator,
            "geom_col": geom_col,
            "subquery": subquery,
            "num_ngbrs": num_ngbrs
        })

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(5)
    except plpy.SPIError:
        plpy.error(
            'Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(5)

    ## collect attributes
    numer = pu.get_attributes(result, 1)
    denom = pu.get_attributes(result, 2)

    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_Rate(numer,
                                          denom,
                                          weight,
                                          permutations=permutations)

    # find units of significance
    quads = quad_position(lisa.q)

    return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
Ejemplo n.º 5
0
def moran_local_bv(subquery, attr1, attr2,
                   permutations, geom_col, id_col, w_type, num_ngbrs):
    """
        Moran's I (local) Bivariate (untested)
    """
    plpy.notice('** Constructing query')

    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr1),
                         ("attr2", attr2),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(4)
    except plpy.SPIError:
        plpy.error("Error: areas of interest query failed, " \
                   "check input parameters")
        plpy.notice('** Query failed: "%s"' % query)
        return pu.empty_zipped_array(4)

    ## collect attributes
    attr1_vals = pu.get_attributes(result, 1)
    attr2_vals = pu.get_attributes(result, 2)

    # create weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
                                        permutations=permutations)

    plpy.notice("len of Is: %d" % len(lisa.Is))

    # find clustering of significance
    lisa_sig = quad_position(lisa.q)

    plpy.notice('** Finished calculations')

    return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
Ejemplo n.º 6
0
def moran(subquery, attr_name, w_type, num_ngbrs, permutations, geom_col,
          id_col):
    """
    Moran's I (global)
    Implementation building neighbors with a PostGIS database and Moran's I
     core clusters with PySAL.
    Andy Eschbacher
    """
    qvals = {
        "id_col": id_col,
        "attr1": attr_name,
        "geom_col": geom_col,
        "subquery": subquery,
        "num_ngbrs": num_ngbrs
    }

    query = pu.construct_neighbor_query(w_type, qvals)

    plpy.notice('** Query: %s' % query)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
        plpy.notice('** Query returned with %d rows' % len(result))
    except plpy.SPIError:
        plpy.error(
            'Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(2)

    ## collect attributes
    attr_vals = pu.get_attributes(result)

    ## calculate weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global
    moran_global = ps.esda.moran.Moran(attr_vals,
                                       weight,
                                       permutations=permutations)

    return zip([moran_global.I], [moran_global.EI])
Ejemplo n.º 7
0
def moran_rate(subquery, numerator, denominator, w_type, num_ngbrs,
               permutations, geom_col, id_col):
    """
    Moran's I Rate (global)
    Andy Eschbacher
    """
    qvals = {
        "id_col": id_col,
        "attr1": numerator,
        "attr2": denominator,
        "geom_col": geom_col,
        "subquery": subquery,
        "num_ngbrs": num_ngbrs
    }

    query = pu.construct_neighbor_query(w_type, qvals)

    plpy.notice('** Query: %s' % query)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
        plpy.notice('** Query returned with %d rows' % len(result))
    except plpy.SPIError:
        plpy.error(
            'Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(2)

    ## collect attributes
    numer = pu.get_attributes(result, 1)
    denom = pu.get_attributes(result, 2)

    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global rate
    lisa_rate = ps.esda.moran.Moran_Rate(numer,
                                         denom,
                                         weight,
                                         permutations=permutations)

    return zip([lisa_rate.I], [lisa_rate.EI])
Ejemplo n.º 8
0
def moran_local(subquery, attr, w_type, num_ngbrs, permutations, geom_col,
                id_col):
    """
    Moran's I implementation for PL/Python
    Andy Eschbacher
    """

    # geometries with attributes that are null are ignored
    # resulting in a collection of not as near neighbors

    qvals = {
        "id_col": id_col,
        "attr1": attr,
        "geom_col": geom_col,
        "subquery": subquery,
        "num_ngbrs": num_ngbrs
    }

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(5)
    except plpy.SPIError:
        plpy.error(
            'Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        return pu.empty_zipped_array(5)

    attr_vals = pu.get_attributes(result)
    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local(attr_vals,
                                     weight,
                                     permutations=permutations)

    # find quadrants for each geometry
    quads = quad_position(lisa.q)

    return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
Ejemplo n.º 9
0
def moran_local_rate(subquery, numerator, denominator,
                     w_type, num_ngbrs, permutations, geom_col, id_col):
    """
        Moran's I Local Rate
        Andy Eschbacher
    """
    # geometries with values that are null are ignored
    # resulting in a collection of not as near neighbors

    qvals = OrderedDict([("id_col", id_col),
                         ("numerator", numerator),
                         ("denominator", denominator),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(5)
    except plpy.SPIError:
        plpy.error('Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(5)

    ## collect attributes
    numer = pu.get_attributes(result, 1)
    denom = pu.get_attributes(result, 2)

    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
                                          permutations=permutations)

    # find quadrants for each geometry
    quads = quad_position(lisa.q)

    return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
Ejemplo n.º 10
0
def moran_rate(subquery, numerator, denominator, w_type, num_ngbrs,
               permutations, geom_col, id_col):
    """
    Moran's I Rate (global)
    Andy Eschbacher
    """
    qvals = OrderedDict([("id_col", id_col), ("attr1", numerator),
                         ("attr2", denominator)("geom_col", geom_col),
                         ("subquery", subquery), ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
    except plpy.SPIError, e:
        plpy.error('Analysis failed: %s' % e)
        return pu.empty_zipped_array(2)
Ejemplo n.º 11
0
def moran(subquery, attr_name,
          w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I (global)
    Implementation building neighbors with a PostGIS database and Moran's I
     core clusters with PySAL.
    Andy Eschbacher
    """
    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr_name),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    plpy.notice('** Query: %s' % query)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
        plpy.notice('** Query returned with %d rows' % len(result))
    except plpy.SPIError:
        plpy.error('Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(2)

    ## collect attributes
    attr_vals = pu.get_attributes(result)

    ## calculate weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global
    moran_global = ps.esda.moran.Moran(attr_vals, weight,
                                       permutations=permutations)

    return zip([moran_global.I], [moran_global.EI])
Ejemplo n.º 12
0
def moran_rate(subquery, numerator, denominator,
               w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I Rate (global)
    Andy Eschbacher
    """
    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", numerator),
                         ("attr2", denominator)
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    plpy.notice('** Query: %s' % query)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
        plpy.notice('** Query returned with %d rows' % len(result))
    except plpy.SPIError:
        plpy.error('Error: areas of interest query failed, check input parameters')
        plpy.notice('** Query failed: "%s"' % query)
        plpy.notice('** Error: %s' % plpy.SPIError)
        return pu.empty_zipped_array(2)

    ## collect attributes
    numer = pu.get_attributes(result, 1)
    denom = pu.get_attributes(result, 2)

    weight = pu.get_weight(result, w_type, num_ngbrs)

    ## calculate moran global rate
    lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
                                         permutations=permutations)

    return zip([lisa_rate.I], [lisa_rate.EI])
Ejemplo n.º 13
0
def moran_local_bv(subquery, attr1, attr2,
                   permutations, geom_col, id_col, w_type, num_ngbrs):
    """
        Moran's I (local) Bivariate (untested)
    """

    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr1),
                         ("attr2", attr2),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(4)
    except plpy.SPIError:
        plpy.error("Error: areas of interest query failed, "
                   "check input parameters")
        return pu.empty_zipped_array(4)

    # collect attributes
    attr1_vals = pu.get_attributes(result, 1)
    attr2_vals = pu.get_attributes(result, 2)

    # create weights
    weight = pu.get_weight(result, w_type, num_ngbrs)

    # calculate LISA values
    lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
                                        permutations=permutations)

    # find clustering of significance
    lisa_sig = quad_position(lisa.q)

    return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
Ejemplo n.º 14
0
def moran(subquery, attr_name, w_type, num_ngbrs, permutations, geom_col,
          id_col):
    """
    Moran's I (global)
    Implementation building neighbors with a PostGIS database and Moran's I
     core clusters with PySAL.
    Andy Eschbacher
    """
    qvals = OrderedDict([("id_col", id_col), ("attr1", attr_name),
                         ("geom_col", geom_col), ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
    except plpy.SPIError, e:
        plpy.error('Analysis failed: %s' % e)
        return pu.empty_zipped_array(2)
Ejemplo n.º 15
0
def moran_rate(subquery, numerator, denominator,
               w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I Rate (global)
    Andy Eschbacher
    """
    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", numerator),
                         ("attr2", denominator)
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
    except plpy.SPIError, e:
        plpy.error('Analysis failed: %s' % e)
        return pu.empty_zipped_array(2)
Ejemplo n.º 16
0
def moran(subquery, attr_name,
          w_type, num_ngbrs, permutations, geom_col, id_col):
    """
    Moran's I (global)
    Implementation building neighbors with a PostGIS database and Moran's I
     core clusters with PySAL.
    Andy Eschbacher
    """
    qvals = OrderedDict([("id_col", id_col),
                         ("attr1", attr_name),
                         ("geom_col", geom_col),
                         ("subquery", subquery),
                         ("num_ngbrs", num_ngbrs)])

    query = pu.construct_neighbor_query(w_type, qvals)

    try:
        result = plpy.execute(query)
        # if there are no neighbors, exit
        if len(result) == 0:
            return pu.empty_zipped_array(2)
    except plpy.SPIError, e:
        plpy.error('Analysis failed: %s' % e)
        return pu.empty_zipped_array(2)
Ejemplo n.º 17
0
 def test_empty_zipped_array(self):
     """Test empty_zipped_array"""
     ans2 = [(None, None)]
     ans4 = [(None, None, None, None)]
     self.assertEqual(pu.empty_zipped_array(2), ans2)
     self.assertEqual(pu.empty_zipped_array(4), ans4)
Ejemplo n.º 18
0
 def test_empty_zipped_array(self):
     """Test empty_zipped_array"""
     ans2 = [(None, None)]
     ans4 = [(None, None, None, None)]
     self.assertEqual(pu.empty_zipped_array(2), ans2)
     self.assertEqual(pu.empty_zipped_array(4), ans4)