Ejemplo n.º 1
0
def evaluate_multi(url, url2, time_lags=24):
    cr = Crawling()
    preds = utils.load_file(url)
    preds = np.array(preds)
    lt = len(preds)
    labels = utils.load_file(url2)
    labels = np.array(labels)

    loss_mae0, loss_mae1 = 0.0, 0.0
    loss_rmse0, loss_rmse1 = 0.0, 0.0
    r2_0, r2_1 = 0.0, 0.0
    for i, d in enumerate(preds):
        lb_i = i * pr.strides + time_lags + 1
        mae0, mse0, r2 = get_evaluation(d[:time_lags, :],
                                        labels[lb_i:(lb_i + time_lags), :, 0])
        # mae1, mse1 = get_evaluation(d[:time_lags,:,1], labels[lb_i:(lb_i+time_lags),:,1])
        loss_rmse0 += mse0
        # loss_rmse1 += mse1
        loss_mae0 += mae0
        # loss_mae1 += mae1
        r2_0 += r2
    loss_mae0 = loss_mae0 / lt * 300
    loss_mae1 = loss_mae1 / lt * 300
    loss_rmse0 = sqrt(loss_rmse0 / lt) * 300
    loss_rmse1 = sqrt(loss_rmse1 / lt) * 300
    r2_0 = r2_0 / lt
    print("MAE: %.6f %.6f" % (loss_mae0, cr.ConcPM25(loss_mae0)))
    print("RMSE: %.6f %.6f" % (loss_rmse0, cr.ConcPM25(loss_rmse0)))
    print("R2 Score: %.6f" % r2_0)
Ejemplo n.º 2
0
def print_accumulate_error(loss_mae,
                           loss_rmse,
                           decoder_length,
                           forecast_factor=0):
    cr = Crawling()
    for x in xrange(decoder_length):
        print("%ih" % (x + 1))
        if not forecast_factor:
            print("S MAE: %.6f %.6f" % (loss_mae[x], cr.ConcPM25(loss_mae[x])))
            print("S RMSE: %.6f %.6f" %
                  (loss_rmse[x], cr.ConcPM25(loss_rmse[x])))
        else:
            print("S PM10 MAE: %.6f %.6f" %
                  (loss_mae[x], cr.ConcPM10(loss_mae[x])))
            print("S PM10 RMSE: %.6f %.6f" %
                  (loss_rmse[x], cr.ConcPM10(loss_rmse[x])))
        if x > 0:
            loss_mae[x] += loss_mae[x - 1]
            t_mae = loss_mae[x] / (x + 1)
            loss_rmse[x] += loss_rmse[x - 1]
            t_rmse = loss_rmse[x] / (x + 1)
            if not forecast_factor:
                print("T MAE: %.6f %.6f" % (t_mae, cr.ConcPM25(t_mae)))
                print("T RMSE: %.6f %.6f" % (t_rmse, cr.ConcPM25(t_rmse)))
            else:
                print("T PM10 MAE: %.6f %.6f" % (t_mae, cr.ConcPM10(t_mae)))
                print("T PM10 RMSE: %.6f %.6f" % (t_rmse, cr.ConcPM10(t_rmse)))
Ejemplo n.º 3
0
def evaluate_single_pred(url, url2, decoder_length=8):
    cr = Crawling()
    data = utils.load_file(url)
    if type(data) is list:
        data = np.asarray(data)
    lt = data.shape[0] * data.shape[1]
    data = np.reshape(data, (lt, 25))
    dtl = len(data)
    labels = utils.load_file(url2)
    labels = np.asarray(labels)
    loss_mae = 0.0
    loss_rmse = 0.0
    r2_total = 0.0
    for i, d in enumerate(data):
        pred_t = np.asarray(d).flatten()
        lb_i = i * pr.strides + 24
        lbt = labels[lb_i:(lb_i + decoder_length), :, 0]
        lbg = lbt[decoder_length - 1, :].flatten()
        mae, mse, r2 = get_evaluation(pred_t, lbg)
        loss_mae += mae
        loss_rmse += mse
        r2_total += r2
        utils.update_progress((i + 1.0) / dtl)
    loss_mae = loss_mae / lt * 300
    loss_rmse = sqrt(loss_rmse / lt) * 300
    r2_total = r2_total / lt
    print("MAE: %.6f %.6f" % (loss_mae, cr.ConcPM25(loss_mae)))
    print("RMSE: %.6f %.6f" % (loss_rmse, cr.ConcPM25(loss_rmse)))
    print("R2 score: %.6f" % r2_total)
Ejemplo n.º 4
0
def evaluate_sp(url, url2, decoder_length=24, is_grid=True, grid_eval=True):
    cr = Crawling()
    map_ = heatmap.build_map()
    data = utils.load_file(url)
    if type(data) is list:
        data = np.asarray(data)
    if len(data.shape) == 4:
        lt = data.shape[0] * data.shape[1]
    else:
        lt = data.shape[0]
    if is_grid:
        data = np.reshape(data, (lt, data.shape[-2], 25, 25))
    else:
        data = np.reshape(data, (lt, data.shape[-2], 25))
    labels = utils.load_file(url2)
    labels = np.asarray(labels)
    loss_mae = 0.0
    loss_rmse = 0.0
    r2_total = 0.0
    for i, d in enumerate(data):
        d = d[:decoder_length, :, :]
        pred_t = []
        if is_grid:
            for d_ in d:
                d_t = heatmap.clear_interpolate_bound(np.asarray(d_), map_)
                pred_t.append(d_t)
        else:
            if grid_eval:
                for d_ in d:
                    d_t = heatmap.fill_map(d_, map_)
                    pred_t.append(d_t)
            else:
                pred_t = d
        lb_i = i * pr.strides + 24
        lbt = labels[lb_i:(lb_i + decoder_length), :, 0]
        if grid_eval:
            lbg = []
            for x in lbt:
                x_l = heatmap.fill_map(x, map_)
                lbg.append(x_l)
            lbg = np.asarray(lbg)
            lbg = lbg.flatten()
        else:
            lbg = lbt.flatten()
        pred_t = np.asarray(pred_t)
        pred_t = pred_t.flatten()
        mae, mse, r2 = get_evaluation(pred_t, lbg)
        loss_mae += mae
        loss_rmse += mse
        r2_total += r2
        utils.update_progress((i + 1.0) / lt)
    loss_mae = loss_mae / lt * 300
    loss_rmse = sqrt(loss_rmse / lt) * 300
    r2_total = r2_total / lt
    print("MAE: %.6f %.6f" % (loss_mae, cr.ConcPM25(loss_mae)))
    print("RMSE: %.6f %.6f" % (loss_rmse, cr.ConcPM25(loss_rmse)))
    print("R2 Score: %.6f" % r2_total)
Ejemplo n.º 5
0
def evaluate_lstm(url,
                  url2,
                  decoder_length=24,
                  forecast_factor=0,
                  is_classify=False):
    data = utils.load_file(url)
    if type(data) is list:
        data = np.asarray(data)
    lt = data.shape[0] * data.shape[1]
    data = np.reshape(data, (lt, data.shape[-1]))
    if decoder_length > data.shape[-1]:
        decoder_length = data.shape[-1]
    dtl = len(data)
    labels = utils.load_file(url2)
    labels = np.asarray(labels)
    if not is_classify:
        loss_mae = [0.0] * decoder_length
        loss_rmse = [0.0] * decoder_length
    else:
        acc = 0.
    #: r2_total = 0.0
    cr = Crawling()
    for i, d in enumerate(data):
        if decoder_length < data.shape[-1]:
            pred_t = d[:decoder_length]
        else:
            pred_t = d
        lb_i = i * pr.strides + 24
        lbt = np.mean(labels[lb_i:(lb_i + decoder_length), :, forecast_factor],
                      axis=1)
        a = 0.
        for t_i, (p, l) in enumerate(zip(pred_t, lbt)):
            if not is_classify:
                # mae, mse, _ = get_evaluation(p, l)
                mae = abs(cr.ConcPM10(p * 300) - cr.ConcPM10(l * 300))
                loss_mae[t_i] += mae
                # loss_rmse[t_i] += mse
            else:
                a += classify_data(pred_t, lbt, forecast_factor)
        if is_classify:
            a = a / decoder_length
            acc += a
        # r2_total += r2
        utils.update_progress((i + 1.0) / dtl)
    if not is_classify:
        loss_mae = np.array(loss_mae) / lt
        # loss_rmse = [sqrt(x / lt)  * 300 for x in loss_rmse]
        # print("R2 score: %.6f" % r2_total)
        print_accumulate_error(loss_mae,
                               loss_rmse,
                               decoder_length,
                               forecast_factor=forecast_factor)
    else:
        acc = acc / lt * 100
        print("accuracy %.4f" % acc)
Ejemplo n.º 6
0
def convert_pm(pm, us_pm, r):
    crawling = Crawling()
    pm_ = []
    # extract stations class
    for d in pm:
        pr = []
        for s in us_pm:
            v = d[s] * r
            #pr.append(get_aqi_class(crawling.AQIPM25(v)))
            pr.append(crawling.aqi_pm25_china_class(v))
        pm_.append(pr)

    # extract class for all pixels
    # for d in pm:
    #     pr = []
    #     for idx in d:
    #         pr.append(get_aqi_class(crawling.AQIPM25(idx)))
    #     pm_.append(pr)
    return pm_
Ejemplo n.º 7
0
#     for k, x in enumerate(y):
#         if x !=0 :
#             data.append(x)
#             px.append(xi[k])
#             py.append(yi[t])

# px = np.array(px)
# py = np.array(py)
# final_data = griddata((px, py), np.array(data), (X,Y), method="nearest")
# # st = ""
# # for x in final_data:
# #     tmp = ",".join([str(y) for y in  x.tolist()])
# #     st += tmp + "\n"

# # save_file("data/shandong_ip.csv", st, False)

# mean_data = np.mean(final_data, axis=1)
# print("output", mean_data.shape)
# st = array_to_str(mean_data)
# save_file("data/shandong_2014_ip.csv", st, False)

#interplate missing data in shandong
# data = pd.read_csv("/media/data/datasets/shandong/aqi_shandong_ip_uniq.csv", names=["timestamp", "pm25"])
# data = data.query("timestamp >= '2013-12-31 23:00:00' & timestamp <= '2016-12-31 22:00:00'")
# print(data)
# df = data.interpolate(method="nearest", axis=0)
# df.to_csv("data/aqi_shandong_ip.csv")
cr = Crawling()
a = [57.17,57.38,55.41,53.42,49.79,45.85,41.6,37.95,37.18,36.44,36.08,37.21,43.26,48.26,52.74,54.6,54.63,56.43,60.68,64.13,65.65,65.92,66.44,67.45,71.07,68.69,61.21,51.95,36.48,29.86,25.69,22.49,21.59,21.67,21.14,19.35,21.78,24.59,28.19,26.57,28.03,29.6,30.64,31.9,31.76,33.8,35.79,39.81,48.28,50.06,48.09,41.05,35.71,32.03,29.74,29.07,26.03,26,27.87,28.24,32.49,37.59,38.62,38.53,39.64,40.92,43.37,47.85,52.05,55.47,56.02,57.56,62.46,62.97,59.7,55.95,52.43,50.36,47.1,42.57,41.11,41.46,43.1,44.23,49.63,54.71,57.82,59.17,58.91,63.12,68.03,69.29,68.54,69.63,74.33,74.13,77.24,83.62,81.71,80.21,76.88,75.12,69.81,67.79,66.07,63.99,62.08,65.99,69.63,71.68,71.61,71.09,72.36,75.51,79.8,82.22,82.1,82.63,85.88,91.59,99.86,99.05,91.31,82.9,76.56,73.16,72.69,72.92,73.79,76.08,73.1,71.32,75.49,76.37,79.48,77.49,80.35,81.98,85.32,89.96,95.4,98.31,104.83,110.51,111.41,113.25,105.22,87.02,73.06,61.42,56.06,55.07,54.71,55.29,51.25,52.26,53.91,50.27,47.48,47.12,46.79,50.4,50.64,50.23,49.19,50.87,53.19,53.13,52.51,50.99,50.06,48.55,48.3,48.39,45.47,43.08,40.76,37.26,37.95,40.19,45.08,49.6,51.22,53.62,55.38,56.66,60.18,62.94,63.3,65.17,67.24,71.32,75.01,77.55,72.62,65.21,55.26,50.17,43.23,38.94,37.94,38.42,39.75,43.94,52.46,57.27,62.33,64.36,67.57,68.53,69.89,68.73,69.82,72.43,76.8,80.15,86.84,87.45,79.97,69.67,59.36,55.02,49.73,46.76,44.99,45.06,45.81,52.56,57.9,63.47,66.1,67.93,67.24,66.78,68.24,68.38,64.5,63.2,55.56,51.83,53.17,52.08,45.47,43.93,43.87,40.35,36.98,33.11,30.99,31.16,32.14,38.42,43.05,47.31,49.43,50.99,49.7,49.92,52.31,52.5,53.93,54.88,54.99,56.92,58.16,60.71,59.55,56.18,55.34,51.52,47.37,43.71,41.86,40.73,40.47,42.52,43.58,41.97,40.96,39.57,40.69,41.65,41.34,42.75,43.62,44.2,47.31,50.39,52.88,58.05,57.76,55.46,51.44,46.82,44.17,43.97,44.53,43.95,46.34,49.96,52.32,57.17,58.08,58.9,59.69,64.09,64.98,67.79,66.89,67.79,70.75,74.93,77.74,76.76,75.8,72.09,68.28,62.09,58.38,57.3,56.81,57.97,59.28,60.85,64.24,65.59,66.19,66.75,68.91,71.25,73.26,74.21,74.96,76.21,78.34,81.95,88,92.97,91.5,82.46,74.72,69.04,66.27,65.37,64.59,65.17,66.66,69.76,76.28,77.07,79.45,81.97,83.07,84.65,83.45,84.21,83.47,85.27,86.52,89.31,92.92,92.16,86.95,80.2,75.76,73.44,72.54,68.34,65.33,64.5,64.88,65.18,65.02,66.88,67.2,64.63,64.95,64.57,63.11,62.48,61.14,59.6,59.64,60.3,63.59,64.65,60.03,56.22,53.54,53.46,49.7,47.18,44.13,43.65,42.88,42.9,45.32,46.01,47,47.62,47.13,46.89,48.69,52.2,56.76,57.41,57.64,58.94,61.9,59.89,56.69,53.26,46.34,47.11,46.68,47.99,47.86,45.54,44.08,43.59,43.94,45.59,46.6,44.95,42.35,39.66,37.83,34.65,31.97,29.65,27.52,26.73,26.31,23.69,20.23,17.69,17.69,17.69,17.69,17.69,17.69,19.9,19.9,19.9,19.9,19.9,19.9,19.9,21.03,19.99,18.8,18.8,20.37,19.2,19.35,20.44,22.92,22.47,19.24,16.67,14.26,13.44,13.08,12.98,14.34,13.59,14.12,16.7,18.28,23.02,24.7,24.89,27.3,27.47,30.86,33.35,33.59,37.49,38.39,40.97,43.62,43.07,36.51,26.34,20.39,17.5,17.56,17.75,18.78,19.98,21.45,22.95,30.47,37.6,40.85,43.78,43.94,46.8,50.97,55.24,59.14,59.31,60.14,62.89,66.15,64.09,57.43,49.49,42.75,37.97,34.87,34.63,34.83,36.11,38.29,43.94,50.9,54.93,53.95,55.8,57.5,58.21,60.89,66.26,68.24,67.97,70.01,72.63,76.48,71.89,59.1,53.08,49.65,47.29,46.6,45.59,45.51,46.8,46.68,49.61,52.38,54.71,56.4,58.87,59.91,57.76,57.08,55.34,54.4,54.59,53.77,54.23,55.22,54.82,51.32,49.21,46.52,44.08,41.43,40.53,40.21,41.15,42.34,47.36,52.11,55.8,56.57,57.38,56.18,55.77,56.36,56.78,56.22,57.24,58.74,63.19,64.18,62.69,58.21,54.77,52.3,50.53,49.96,47.42,48.37,48.76,49.17,55.51,61.67,68.11,73.35,80.78,78.72,72.26,72.94,74.74,76.07,76.4,74.38,75.47,75.07,73.49,70.8,66.37,58.05,55.91,51.03,49.78,50.41,53.68,51.43,52.93,58.39,56.88,56.02,54.52,52.93,50.89,51.1,51.41,49.59,50.25,49.04,50.57,53.31,53.19,50.25,46.39,41.51,40.24,40.4,38.98,39.97,41.44,44.37,48.08,49.07,49.13,46.89,46.05,44.5,39.4,37.79,38.81,38.89,37.13,37.87,40.17,41.7,43.92,49.83,50.6,48.38,52.04,55.6,55.51,50.54,48.95,44.68,42.55,38.45,34.35,29.25,26.61,24.96,22.15,19.41,18.42,17.65,15.72,15.11,15.04,15.88,15.97,17.07,16.47,16.69,16.35,17.18,18.29,18.42,18.95,19.4,21.25,23.28,24.66,24.86,25.58,27.11,27.95,30.39,32.09,32.45,32.81,34.83,37.76,42.4,38.87,35.38,28.56,23.26,23.23,22.78,22.06,23.98,25.86,29.06,32.52,39.97,44.4,46,49.78,50.63,52.84,55.94,58.17,59.49,62.09,61.69,65.16]
for x in a:
    print(cr.AQIPM25(x))
Ejemplo n.º 8
0
def evaluate_china(url,
                   url2,
                   stations,
                   encoder_length=12,
                   decoder_length=24,
                   eval_stat=False):
    cr = Crawling()
    # missing = [136,156,824,1028,1053,1084,1085,1457,1460,1461,1462,1464,1465,1476,1477, \
    #         1478,1479,1481,1482,1484,1485,1486,1487,1510,1841,3814,4246,4268,4301,4311, \
    #         4313,4317,4329,4331,4333,4349,4360,4504,4524,4529,4532,4535,4580,4860,5270, \
    #         5457,5489,5509,5962,6007,6011,6039,6054,6125,6172,6189,6192,6201,6230,6234, \
    #         6246,6254,6255,6256,6257,6258,6295,6300,6319,6336,6356,6362,6371,6372,6394, \
    #         6491,6492,6493,6494,6497,6517,6519,6523,6539,6559,6564,6568,6569,6570,6612, \
    #         6613,6614,6615,6616,6617,6618,6619,6620,6621,6622,6623,6624,6625,6626,6627, \
    #         6628,6629,6630,6631,6632,6633,6634,6635,6636,6637,6638,6687,6704,6754,6832, \
    #         6849,6858,6873,6979,7255,8099,8100,8101,8225,8226,8227,8228,8229,8230,8231, \
    #         8232,8233,8234,8235,8236,8237,8238,8239,8240,8241,8273,8274,8275,8276,8277, \
    #         8278,8279,8280,8281,8282,8283,8284,8285,8286,8287,8288,8289,8290,8291,8344, \
    #         8421,8422,8423,8424,8425,8426,8427,8428,8429,8430,8431,8432,8495,8496,8497, \
    #         8498,8499,8500,8501,8502,8503,8504,8631,8759]
    data = utils.load_file(url)
    labels = utils.load_file(url2)
    if type(data) is list:
        data = np.asarray(data)
    if len(data.shape) == 4:
        lt = data.shape[0] * data.shape[1]
        data = np.reshape(data, (lt, data.shape[-2], data.shape[-1]))
        labels = np.reshape(labels, (lt, data.shape[-2], data.shape[-1]))
    else:
        lt = len(data)
        data = np.array(data)
        labels = np.array(labels)
    if not eval_stat:
        loss_mae = [0.0] * decoder_length
    else:
        loss_mae = np.array([[0.0] * decoder_length] * len(stations))
    classes = [0.0] * decoder_length
    # loss_lt = 0
    loss_total = [0.0] * decoder_length
    # ckt = 0
    valid = []
    for i, (d_, l_) in enumerate(zip(data, labels)):
        # st = 2 * i
        # ed = st + decoder_length
        # flag = False
        # for ck in range(st, ed):
        #     if ck in missing:
        #         flag = True
        #         break
        # if flag:
        #     continue
        d = d_[:decoder_length, :]
        lbt = l_[:decoder_length, :]
        for t_i, (t, l_t) in enumerate(zip(d, lbt)):
            pred_t = []
            label_t = []
            for r in stations:
                #pred_t.append(t[r])
                #label_t.append(l_t[r])
                # if not math.isnan(t[r]):
                pr = t[r]
                if pr < 0:
                    pr = 0
                print(pr)
                pred_t.append(cr.aqi_pm25_china(pr))
                label_t.append(cr.aqi_pm25_china(l_t[r] * 300))
                # label_t.append(l_t[r])
                # print(t[r], l_t[r])
            # if pred_t:
            if not eval_stat:
                mae = mean_absolute_error(pred_t, label_t)
                classes[t_i] += accuracy_score(
                    [cr.aqi_pm25_china_class(x) for x in pred_t],
                    [cr.aqi_pm25_china_class(x) for x in label_t])
                if mae > 80:
                    valid.append("%i,%i" % (i, t_i))
                if mae < 80:
                    loss_total[t_i] += 1
                    loss_mae[t_i] += mae
            else:
                mae = [abs(p_s - l_s) for p_s, l_s in zip(pred_t, label_t)]
                for m_i, m in enumerate(mae):
                    loss_mae[m_i, t_i] += m
        # loss_lt += 1
        # utils.update_progress((i + 1.0) / lt)
    va = "\n".join(valid)
    save_file("outline_china", va, False)
    loss_mae = [x / y if y > 0 else 0 for x, y in zip(loss_mae, loss_total)]
    for i, x in enumerate(loss_mae):
        # if not eval_stat:
        print(x, loss_total[i])
        # else:
        # print([y/loss_lt for y in x])
    # print("accumulated:", np.mean(loss_mae[1:6]))
    print(np.array(classes) / lt)
Ejemplo n.º 9
0
def evaluate_by_districts(url,
                          url2,
                          stride=2,
                          encoder_length=72,
                          decoder_length=24,
                          forecast_factor=0,
                          is_classify=False,
                          confusion_title="",
                          norm=True,
                          is_grid=True,
                          offset=48,
                          agg=True):
    print(encoder_length, decoder_length, offset)
    if not utils.validate_path("district_idx.pkl"):
        districts = convert_coordinate_to_idx()
    else:
        districts = utils.load_file("district_idx.pkl")
    data = utils.load_file(url)
    print(np.shape(data))
    if type(data) is list:
        data = np.asarray(data)
    if len(data.shape) == 4:
        lt = data.shape[0] * data.shape[1]
        # if not is_grid:
        # data = np.reshape(data, (lt, data.shape[-1]))
        # else:
        data = np.reshape(data, (lt, data.shape[-2], data.shape[-1]))
    else:
        lt = data.shape[0]
        data = np.reshape(data, (lt, data.shape[-2], data.shape[-1]))
    st_h = 0
    if agg:
        days = int(math.ceil(data.shape[1] / 24.0))
        if days > 2:
            st_h = (days - 1) * 24
    labels = utils.load_file(url2)
    labels = np.asarray(labels)
    if not is_classify:
        loss_mae = [0.0] * data.shape[1]
        # loss_rmse = [0.0] * decoder_length
    elif not confusion_title:
        acc = 0.
    else:
        acc = None
    cr = Crawling()
    for i, d in enumerate(data):
        if not is_grid:
            d = d[st_h:decoder_length]
        else:
            d = d[st_h:decoder_length, :]
        lb_i = i * stride + encoder_length
        lbt = labels[(lb_i + offset):(lb_i + offset + decoder_length), :,
                     forecast_factor]
        if not confusion_title:
            a = 0.
        else:
            a = None
        for t_i, (t, l_t) in enumerate(zip(d, lbt)):
            t_i += st_h
            if is_grid:
                pred_t = aggregate_predictions(districts, t)
                pred_t = np.array(pred_t)
            else:
                pred_t = t
            pred_t = pred_t.flatten()
            if not is_classify:
                if not forecast_factor:
                    # mae, mse, _ = get_evaluation(pred_t, l_t)
                    #mae = mean_absolute_error(pred_t * 300, l_t * 300)
                    mae = mean_absolute_error(
                        [cr.ConcPM25(x * 300) for x in pred_t],
                        [cr.ConcPM25(x * 300) for x in l_t])
                    loss_mae[t_i] += mae
                    # loss_rmse[t_i] += mse
                else:
                    mae = mean_absolute_error(
                        [cr.ConcPM10(x * 300) for x in pred_t],
                        [cr.ConcPM10(x * 300) for x in l_t])
                    loss_mae[t_i] += mae
            elif not confusion_title:
                a += classify_data(pred_t, l_t, forecast_factor, tp="G")
            elif a is None:
                a = classify_data(pred_t, l_t, forecast_factor, True, tp="G")
            else:
                a += classify_data(pred_t, l_t, forecast_factor, True, tp="G")
        if is_classify:
            a = a / decoder_length
            if not confusion_title:
                acc += a
            elif acc is None:
                acc = a
            else:
                acc += a
        utils.update_progress((i + 1.0) / lt)
    if not is_classify:
        # print mae loss score
        # caculate loss for each timestep
        loss_mae = np.array(loss_mae) / lt
        # loss_rmse = [sqrt(x / lt)  * 300 for x in loss_rmse]
        # calculate accumulated loss
        if agg:
            no_h = len(loss_mae)
            if no_h > 24:
                print("hourly errors", loss_mae[:24])
                days = math.ceil(no_h * 1.0 / 24)
                for x in xrange(1, int(days)):
                    ed = (x + 1) * 24
                    if ed > no_h:
                        ed = no_h
                    print("day %i" % (x + 1), np.mean(loss_mae[x * 24:ed]))
            else:
                print(loss_mae)
        else:
            print(loss_mae)
        #print_accumulate_error(loss_mae, loss_rmse, decoder_length, forecast_factor)
    elif not confusion_title:
        # print classification score
        acc = acc / lt * 100
        print("accuracy %.4f" % acc)
    else:
        name = url.split("/")[-1]
        # print confusion matrix
        utils.save_file("results/confusion/confusion_%s" % name, acc)
        draw_confusion_matrix(acc, confusion_title, norm)