Ejemplo n.º 1
0
    def createPseudoImpulseModel(self, supportFootIds, swingFootTask):
        """ Action model for pseudo-impulse models.

        A pseudo-impulse model consists of adding high-penalty cost for the contact velocities.
        :param supportFootIds: Ids of the constrained feet
        :param swingFootTask: swinging foot task
        :return pseudo-impulse differential action model
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        nu = self.actuation.nu
        contactModel = crocoddyl.ContactModelMultiple(self.state, nu)
        for i in supportFootIds:
            supportContactModel = crocoddyl.ContactModel3D(self.state, i, np.array([0., 0., 0.]), nu,
                                                           np.array([0., 50.]))
            contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, nu)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.Rsurf, self.mu, 4, False)
            coneResidual = crocoddyl.ResidualModelContactFrictionCone(self.state, i, cone, nu)
            coneActivation = crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub))
            frictionCone = crocoddyl.CostModelResidual(self.state, coneActivation, coneResidual)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                frameTranslationResidual = crocoddyl.ResidualModelFrameTranslation(self.state, i[0], i[1].translation,
                                                                                   nu)
                frameVelocityResidual = crocoddyl.ResidualModelFrameVelocity(self.state, i[0], pinocchio.Motion.Zero(),
                                                                             pinocchio.LOCAL, nu)
                footTrack = crocoddyl.CostModelResidual(self.state, frameTranslationResidual)
                impulseFootVelCost = crocoddyl.CostModelResidual(self.state, frameVelocityResidual)
                costModel.addCost(self.rmodel.frames[i[0]].name + "_footTrack", footTrack, 1e7)
                costModel.addCost(self.rmodel.frames[i[0]].name + "_impulseVel", impulseFootVelCost, 1e6)

        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * self.rmodel.nv)
        stateResidual = crocoddyl.ResidualModelState(self.state, self.rmodel.defaultState, nu)
        stateActivation = crocoddyl.ActivationModelWeightedQuad(stateWeights**2)
        ctrlResidual = crocoddyl.ResidualModelControl(self.state, nu)
        stateReg = crocoddyl.CostModelResidual(self.state, stateActivation, stateResidual)
        ctrlReg = crocoddyl.CostModelResidual(self.state, ctrlResidual)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel,
                                                                     costModel, 0., True)
        if self.integrator == 'euler':
            model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.)
        elif self.integrator == 'rk4':
            model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.four, 0.)
        elif self.integrator == 'rk3':
            model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.three, 0.)
        elif self.integrator == 'rk2':
            model = crocoddyl.IntegratedActionModelRK(dmodel, crocoddyl.RKType.two, 0.)
        else:
            model = crocoddyl.IntegratedActionModelEuler(dmodel, 0.)
        return model
Ejemplo n.º 2
0
def runBenchmark(model):
    robot_model = ROBOT.model
    q0 = np.matrix([0.173046, 1., -0.52366, 0., 0., 0.1, -0.005]).T
    x0 = np.vstack([q0, np.zeros((robot_model.nv, 1))])

    # Note that we need to include a cost model (i.e. set of cost functions) in
    # order to fully define the action model for our optimal control problem.
    # For this particular example, we formulate three running-cost functions:
    # goal-tracking cost, state and control regularization; and one terminal-cost:
    # goal cost. First, let's create the common cost functions.
    state = crocoddyl.StateMultibody(robot_model)
    Mref = crocoddyl.FramePlacement(
        robot_model.getFrameId("gripper_left_joint"),
        pinocchio.SE3(np.eye(3), np.matrix([[.0], [.0], [.4]])))
    goalTrackingCost = crocoddyl.CostModelFramePlacement(state, Mref)
    xRegCost = crocoddyl.CostModelState(state)
    uRegCost = crocoddyl.CostModelControl(state)

    # Create a cost model per the running and terminal action model.
    runningCostModel = crocoddyl.CostModelSum(state)
    terminalCostModel = crocoddyl.CostModelSum(state)

    # Then let's added the running and terminal cost functions
    runningCostModel.addCost("gripperPose", goalTrackingCost, 1e-3)
    runningCostModel.addCost("xReg", xRegCost, 1e-7)
    runningCostModel.addCost("uReg", uRegCost, 1e-7)
    terminalCostModel.addCost("gripperPose", goalTrackingCost, 1)

    # Next, we need to create an action model for running and terminal knots. The
    # forward dynamics (computed using ABA) are implemented
    # inside DifferentialActionModelFullyActuated.
    runningModel = crocoddyl.IntegratedActionModelEuler(
        model(state, runningCostModel), 1e-3)
    runningModel.differential.armature = np.matrix(
        [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.]).T
    terminalModel = crocoddyl.IntegratedActionModelEuler(
        model(state, terminalCostModel), 1e-3)
    terminalModel.differential.armature = np.matrix(
        [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.]).T

    # For this optimal control problem, we define 100 knots (or running action
    # models) plus a terminal knot
    problem = crocoddyl.ShootingProblem(x0, [runningModel] * N, terminalModel)

    # Creating the DDP solver for this OC problem, defining a logger
    ddp = crocoddyl.SolverDDP(problem)

    duration = []
    for i in range(T):
        c_start = time.time()
        ddp.solve([], [], MAXITER)
        c_end = time.time()
        duration.append(1e3 * (c_end - c_start))

    avrg_duration = sum(duration) / len(duration)
    min_duration = min(duration)
    max_duration = max(duration)
    return avrg_duration, min_duration, max_duration
Ejemplo n.º 3
0
    def createSwingFootModel(self, timeStep, supportFootIds, comTask=None, swingFootTask=None):
        """ Action model for a swing foot phase.

        :param timeStep: step duration of the action model
        :param supportFootIds: Ids of the constrained feet
        :param comTask: CoM task
        :param swingFootTask: swinging foot task
        :return action model for a swing foot phase
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state, self.actuation.nu)
        for i in supportFootIds:
            xref = crocoddyl.FrameTranslation(i, np.matrix([0., 0., 0.]).T)
            supportContactModel = crocoddyl.ContactModel3D(self.state, xref, self.actuation.nu, np.matrix([0., 50.]).T)
            contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        if isinstance(comTask, np.ndarray):
            comTrack = crocoddyl.CostModelCoMPosition(self.state, comTask, self.actuation.nu)
            costModel.addCost("comTrack", comTrack, 1e6)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.nsurf, self.mu, 4, False)
            frictionCone = crocoddyl.CostModelContactFrictionCone(
                self.state, crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub)),
                cone, i, self.actuation.nu)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                xref = crocoddyl.FrameTranslation(i.frame, i.oMf.translation)
                footTrack = crocoddyl.CostModelFrameTranslation(self.state, xref, self.actuation.nu)
                costModel.addCost(self.rmodel.frames[i.frame].name + "_footTrack", footTrack, 1e6)

        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * 6 + [1.] *
                                (self.rmodel.nv - 6))
        stateReg = crocoddyl.CostModelState(self.state,
                                            crocoddyl.ActivationModelWeightedQuad(np.matrix(stateWeights**2).T),
                                            self.rmodel.defaultState, self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-1)

        lb = self.state.diff(0 * self.state.lb, self.state.lb)
        ub = self.state.diff(0 * self.state.ub, self.state.ub)
        stateBounds = crocoddyl.CostModelState(
            self.state, crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(lb, ub)),
            0 * self.rmodel.defaultState, self.actuation.nu)
        costModel.addCost("stateBounds", stateBounds, 1e3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel,
                                                                     costModel, 0., True)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, timeStep)
        return model
Ejemplo n.º 4
0
    def createSwingFootModel(self,
                             timeStep,
                             supportFootIds,
                             comTask=None,
                             swingFootTask=None):
        """ Action model for a swing foot phase.

        :param timeStep: step duration of the action model
        :param supportFootIds: Ids of the constrained feet
        :param comTask: CoM task
        :param swingFootTask: swinging foot task
        :return action model for a swing foot phase
        """
        # Creating a 6D multi-contact model, and then including the supporting
        # foot
        contactModel = crocoddyl.ContactModelMultiple(self.state,
                                                      self.actuation.nu)
        for i in supportFootIds:
            Mref = crocoddyl.FramePlacement(i, pinocchio.SE3.Identity())
            supportContactModel = \
                crocoddyl.ContactModel6D(self.state, Mref, self.actuation.nu, np.matrix([0., 0.]).T)
            contactModel.addContact(self.rmodel.frames[i].name + "_contact",
                                    supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, self.actuation.nu)
        if isinstance(comTask, np.ndarray):
            comTrack = crocoddyl.CostModelCoMPosition(self.state, comTask,
                                                      self.actuation.nu)
            costModel.addCost("comTrack", comTrack, 1e6)
        if swingFootTask is not None:
            for i in swingFootTask:
                footTrack = crocoddyl.CostModelFramePlacement(
                    self.state, i, self.actuation.nu)
                costModel.addCost(
                    self.rmodel.frames[i.frame].name + "_footTrack", footTrack,
                    1e6)

        stateWeights = np.array([0] * 3 + [500.] * 3 + [0.01] *
                                (self.state.nv - 6) + [10] * self.state.nv)
        stateReg = crocoddyl.CostModelState(
            self.state,
            crocoddyl.ActivationModelWeightedQuad(
                np.matrix(stateWeights**2).T), self.rmodel.defaultState,
            self.actuation.nu)
        ctrlReg = crocoddyl.CostModelControl(self.state, self.actuation.nu)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-1)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(
            self.state, self.actuation, contactModel, costModel)
        model = crocoddyl.IntegratedActionModelEuler(dmodel, timeStep)
        return model
Ejemplo n.º 5
0
def solver(starting_condition, T=30, precision=1e-9, maxiters=1000):
    """Solve one pendulum problem"""
    robot = example_robot_data.loadDoublePendulum()
    robot_model = robot.model

    state = crocoddyl.StateMultibody(robot_model)
    actModel = ActuationModelDoublePendulum(state, actLink=1)

    weights = np.array([1.5, 1.5, 1, 1] + [0.1] * 2)
    runningCostModel = crocoddyl.CostModelSum(state, actModel.nu)
    dt = 1e-2

    xRegCost = crocoddyl.CostModelState(
        state, crocoddyl.ActivationModelQuad(state.ndx), state.zero(),
        actModel.nu)

    uRegCost = crocoddyl.CostModelControl(state,
                                          crocoddyl.ActivationModelQuad(1),
                                          actModel.nu)
    xPendCost = CostModelDoublePendulum(
        state, crocoddyl.ActivationModelWeightedQuad(weights), actModel.nu)

    runningCostModel.addCost("uReg", uRegCost, 1e-4 / dt)
    runningCostModel.addCost("xGoal", xPendCost, 1e-5 / dt)

    runningModel = crocoddyl.IntegratedActionModelEuler(
        crocoddyl.DifferentialActionModelFreeFwdDynamics(
            state, actModel, runningCostModel), dt)

    terminalCostModel = crocoddyl.CostModelSum(state, actModel.nu)
    terminalCostModel.addCost("xGoal", xPendCost, 1e4)
    terminal_model = crocoddyl.IntegratedActionModelEuler(
        crocoddyl.DifferentialActionModelFreeFwdDynamics(
            state, actModel, terminalCostModel), dt)

    problem = crocoddyl.ShootingProblem(starting_condition, [runningModel] * T,
                                        terminal_model)

    fddp = crocoddyl.SolverFDDP(problem)
    fddp.th_stop = precision

    fddp.solve([], [], maxiters)
Ejemplo n.º 6
0
def solve_problem(terminal_model=None,
                  initial_configuration=None,
                  horizon: int = 100,
                  precision: float = 1e-9,
                  maxiters: int = 1000):
    """
    Solve the problem for a given initial_position.
    
    @params:
        1: terminal_model    = Terminal model with neural network inside it, for the crocoddyl problem.
                               If none, then Crocoddyl Integrated Action Model will be used as terminal model.
        
        2: initial_configuration = initial position for the unicycle, 
                                    either a list or a numpy array or a tensor.
        
        3: horizon           = Time horizon for the unicycle. Defaults to 100
        
        4: stop              = ddp.th_stop. Defaults to 1e-9
        
        5: maxiters          = maximum iterations allowed for crocoddyl.Defaults to 1000

        
    @returns:
        ddp
    """

    if isinstance(initial_configuration, list):
        initial_configuration = np.array(initial_configuration)

    elif isinstance(initial_configuration, torch.Tensor):
        initial_configuration = initial_configuration.numpy()

    # Loading the double pendulum model
    robot = example_robot_data.loadDoublePendulum()
    robot_model = robot.model

    state = crocoddyl.StateMultibody(robot_model)
    actModel = ActuationModelDoublePendulum(state, actLink=1)

    weights = np.array([1, 1, 1, 1] + [0.1] * 2)
    runningCostModel = crocoddyl.CostModelSum(state, actModel.nu)
    xRegCost = crocoddyl.CostModelState(
        state, crocoddyl.ActivationModelQuad(state.ndx), state.zero(),
        actModel.nu)

    uRegCost = crocoddyl.CostModelControl(state,
                                          crocoddyl.ActivationModelQuad(1),
                                          actModel.nu)

    xPendCost = CostModelDoublePendulum(
        state, crocoddyl.ActivationModelWeightedQuad(np.matrix(weights).T),
        actModel.nu)

    dt = 1e-2

    runningCostModel.addCost("uReg", uRegCost, 1e-4 / dt)
    runningCostModel.addCost("xGoal", xPendCost, 1e-5 / dt)

    runningModel = crocoddyl.IntegratedActionModelEuler(
        crocoddyl.DifferentialActionModelFreeFwdDynamics(
            state, actModel, runningCostModel), dt)

    if terminal_model is None:
        terminalCostModel = crocoddyl.CostModelSum(state, actModel.nu)
        terminalCostModel.addCost("xGoal", xPendCost, 1e4)
        terminal_model = crocoddyl.IntegratedActionModelEuler(
            crocoddyl.DifferentialActionModelFreeFwdDynamics(
                state, actModel, terminalCostModel), dt)

    # Creating the shooting problem and the FDDP solver
    problem = crocoddyl.ShootingProblem(initial_configuration.T,
                                        [runningModel] * horizon,
                                        terminal_model)

    fddp = crocoddyl.SolverFDDP(problem)

    fddp.th_stop = precision

    fddp.solve([], [], maxiters)

    return fddp
Ejemplo n.º 7
0
    def createSwingFootModel(self, timeStep, supportFootIds, comTask=None, swingFootTask=None):
        """ Action model for a swing foot phase.

        :param timeStep: step duration of the action model
        :param supportFootIds: Ids of the constrained feet
        :param comTask: CoM task
        :param swingFootTask: swinging foot task
        :return action model for a swing foot phase
        """
        # Creating a 3D multi-contact model, and then including the supporting
        # foot
        nu = self.actuation.nu
        contactModel = crocoddyl.ContactModelMultiple(self.state, nu)
        for i in supportFootIds:
            supportContactModel = crocoddyl.ContactModel3D(self.state, i, np.array([0., 0., 0.]), nu,
                                                           np.array([0., 50.]))
            contactModel.addContact(self.rmodel.frames[i].name + "_contact", supportContactModel)

        # Creating the cost model for a contact phase
        costModel = crocoddyl.CostModelSum(self.state, nu)
        if isinstance(comTask, np.ndarray):
            comResidual = crocoddyl.ResidualModelCoMPosition(self.state, comTask, nu)
            comTrack = crocoddyl.CostModelResidual(self.state, comResidual)
            costModel.addCost("comTrack", comTrack, 1e6)
        for i in supportFootIds:
            cone = crocoddyl.FrictionCone(self.Rsurf, self.mu, 4, False)
            coneResidual = crocoddyl.ResidualModelContactFrictionCone(self.state, i, cone, nu)
            coneActivation = crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(cone.lb, cone.ub))
            frictionCone = crocoddyl.CostModelResidual(self.state, coneActivation, coneResidual)
            costModel.addCost(self.rmodel.frames[i].name + "_frictionCone", frictionCone, 1e1)
        if swingFootTask is not None:
            for i in swingFootTask:
                frameTranslationResidual = crocoddyl.ResidualModelFrameTranslation(self.state, i[0], i[1].translation,
                                                                                   nu)
                footTrack = crocoddyl.CostModelResidual(self.state, frameTranslationResidual)
                costModel.addCost(self.rmodel.frames[i[0]].name + "_footTrack", footTrack, 1e6)

        stateWeights = np.array([0.] * 3 + [500.] * 3 + [0.01] * (self.rmodel.nv - 6) + [10.] * 6 + [1.] *
                                (self.rmodel.nv - 6))
        stateResidual = crocoddyl.ResidualModelState(self.state, self.rmodel.defaultState, nu)
        stateActivation = crocoddyl.ActivationModelWeightedQuad(stateWeights**2)
        ctrlResidual = crocoddyl.ResidualModelControl(self.state, nu)
        stateReg = crocoddyl.CostModelResidual(self.state, stateActivation, stateResidual)
        ctrlReg = crocoddyl.CostModelResidual(self.state, ctrlResidual)
        costModel.addCost("stateReg", stateReg, 1e1)
        costModel.addCost("ctrlReg", ctrlReg, 1e-1)

        lb = np.concatenate([self.state.lb[1:self.state.nv + 1], self.state.lb[-self.state.nv:]])
        ub = np.concatenate([self.state.ub[1:self.state.nv + 1], self.state.ub[-self.state.nv:]])
        stateBoundsResidual = crocoddyl.ResidualModelState(self.state, nu)
        stateBoundsActivation = crocoddyl.ActivationModelQuadraticBarrier(crocoddyl.ActivationBounds(lb, ub))
        stateBounds = crocoddyl.CostModelResidual(self.state, stateBoundsActivation, stateBoundsResidual)
        costModel.addCost("stateBounds", stateBounds, 1e3)

        # Creating the action model for the KKT dynamics with simpletic Euler
        # integration scheme
        dmodel = crocoddyl.DifferentialActionModelContactFwdDynamics(self.state, self.actuation, contactModel,
                                                                     costModel, 0., True)
        if self.integrator == 'euler':
            model = crocoddyl.IntegratedActionModelEuler(dmodel, self.control, timeStep)
        elif self.integrator == 'rk4':
            model = crocoddyl.IntegratedActionModelRK(dmodel, self.control, crocoddyl.RKType.four, timeStep)
        elif self.integrator == 'rk3':
            model = crocoddyl.IntegratedActionModelRK(dmodel, self.control, crocoddyl.RKType.three, timeStep)
        elif self.integrator == 'rk2':
            model = crocoddyl.IntegratedActionModelRK(dmodel, self.control, crocoddyl.RKType.two, timeStep)
        else:
            model = crocoddyl.IntegratedActionModelEuler(dmodel, self.control, timeStep)
        return model
ex_d = ex_m.createData()

x = ex_m.state.rand()
u = np.zeros(2)
a = ex_m.calc(ex_d, x, u)
print(ex_d.xout)

ex_nd = crocoddyl.DifferentialActionModelNumDiff(ex_m, True)
ex_d = ex_nd.createData()
ex_nd.calc(ex_d, x, u)
print('h')
ex_nd.calcDiff(ex_d, x, u)
print(ex_d.Fx)

timeStep = 5e-2
ex_iam = crocoddyl.IntegratedActionModelEuler(ex_nd, timeStep)

x0 = np.matrix([0., 0, np.pi / 2., 0.]).T
T = 50
problem = crocoddyl.ShootingProblem(x0, [ex_iam] * T, ex_iam)

us = [pinocchio.utils.zero(ex_iam.differential.nu)] * T
xs = problem.rollout(us)

import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111,
                     aspect='equal',
                     autoscale_on=False,
                     xlim=(-2, 6),
                     ylim=(-2, 6))