Ejemplo n.º 1
0
    def Update_trends(self):
        # Change to data directory
        os.chdir(self.home_dir + '\\Data')

        # define date
        my_cryptory = Cryptory(from_date="2018-05-01")

        # pull data from google trends
        df = my_cryptory.get_google_trends(kw_list=["cryptokitties"])

        # save as csv
        df.to_csv('trends.csv', index=0)

        print("\nUpdated google trends data, saved in trends.csv\n")

        # change directory back to original
        os.chdir(self.home_dir)
Ejemplo n.º 2
0
    def Update_ETH_price(self):
        # Change to data directory
        os.chdir(self.home_dir + '\\Data')

        # define date to pull from
        my_cryptory = Cryptory(from_date="2018-05-01")

        # get historical ethereum prices from coinmarketcap
        df = my_cryptory.extract_coinmarketcap("ethereum")

        # save as csv
        df.to_csv('ETH_price.csv', index=0)

        print("\nUpdated Ethereum price data, saved in ETH_price.csv\n")

        # change directory back to original
        os.chdir(self.home_dir)
Ejemplo n.º 3
0
    def __init__(self,
                 date_from,
                 date_to,
                 days=None,
                 bitinfo_list=None,
                 google_list=None,
                 prediction_ticker='ltc'):
        if bitinfo_list is None:
            bitinfo_list = ['btc', 'eth']
        if google_list is None:
            google_list = ['Litecoin']
        cryp_obj = Cryptory(from_date=date_from, to_date=date_to)
        fin_table = cryp_obj.extract_bitinfocharts(bitinfo_list[0])

        if len(bitinfo_list) > 1:
            for i in range(1, len(bitinfo_list)):
                temp_table = cryp_obj.extract_bitinfocharts(bitinfo_list[i])
                temp_table = temp_table.drop(columns='date')
                fin_table = pd.concat([fin_table, temp_table],
                                      axis=1,
                                      join_axes=[temp_table.index])

        prediction_table = cryp_obj.extract_bitinfocharts(prediction_ticker)
        prediction_table = prediction_table.drop(columns='date')

        if google_list:
            google_table = cryp_obj.get_google_trends(google_list)
            self.final_table = pd.concat(
                [fin_table, google_table, prediction_table],
                axis=1,
                join_axes=[prediction_table.index])
        else:
            self.final_table = pd.concat([fin_table, prediction_table],
                                         axis=1,
                                         join_axes=[prediction_table.index])

        if days is not None:
            self.days_out = days
Ejemplo n.º 4
0
X_test = []
Y_test = []


def get_mean():
    global Y_mean
    return Y_mean


def get_std():
    global Y_std
    return Y_std


#####GET GOOGLE TRENDS#####
my_cryptory = Cryptory(from_date="2015-08-25", to_date="2018-04-04")
trend1 = my_cryptory.get_google_trends(kw_list=['bitcoin'])
trend2 = my_cryptory.get_google_trends(kw_list=['ethereum'])


def generatedata_v1(isTrain, batch_size):
    """
    Return data regarding cyrptocurrencies.

    """
    # window for encoder and decoder's predictions.
    seq_length = 40

    global Y_train
    global X_train
    global X_test
Ejemplo n.º 5
0
import re
import plotly.graph_objects as go
import time

# initialise object
# pull data from start of 2017 to present day
from_date = "2013-04-28"
to_date = "2020-03-21"
to_date_bitcoin = "2020-03-20"
from_date_cmp = time.strptime(from_date, "%Y-%m-%d")
to_date_cmp = time.strptime(to_date, "%Y-%m-%d")

lowest_date = ''
highest_date = ''

my_cryptory = Cryptory(from_date=from_date, to_date=to_date, timeout=100)

coin_col = False
coin = "bitcoin"


def extract_coinmarketcap(coin, coin_col=False):
    try:
        output = pd.read_html(
            "https://coinmarketcap.com/currencies/{}/historical-data/?start={}&end={}"
            .format(coin, from_date.replace("-", ""),
                    to_date_bitcoin.replace("-", "")))[2]

    except:
        # future versions may split out the different exceptions (e.g. timeout)
        raise
Ejemplo n.º 6
0
Created on 4 mrt. 2020

@author: stan
'''
# load package
from cryptory import Cryptory
import datetime
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import re
import plotly.graph_objects as go

# initialise object
# pull data from start of 2017 to present day
my_cryptory = Cryptory(from_date="2015-12-31", to_date="2020-03-21")

dates = list(reversed(my_cryptory.extract_bitinfocharts("btc")["date"]))
#print(dates)
priceBTC = list(reversed(
    my_cryptory.extract_bitinfocharts("btc")["btc_price"]))
#print(my_cryptory.get_google_trends(kw_list=['bitcoin']))
GoogleTrends = list(
    reversed(my_cryptory.get_google_trends(kw_list=['bitcoin'])["bitcoin"]))

#Subreddit
RedditData = my_cryptory.extract_reddit_metrics(
    "bitcoin", "subscriber-growth-perc")["subscriber_growth_perc"]

#print("Length dates: {} ".format(len(dates)))
#print("Length priceBTC: {} ".format(len(priceBTC)))
Ejemplo n.º 7
0
# load package
from cryptory import Cryptory

# initialise object
# pull data from start of 2017 to present day
my_cryptory = Cryptory(from_date="2017-01-01")

######## Basic Usage

# get historical bitcoin prices from coinmarketcap
my_cryptory.extract_coinmarketcap("bitcoin")

# get daily subscriber numbers to the bitcoin reddit page
my_cryptory.extract_reddit_metrics(subreddit="bitcoin",
                                   metric="total-subscribers")

# google trends- bitcoin search results
my_cryptory.get_google_trends(kw_list=["bitcoin"])

# dow jones price (market code from yahoo finance)
my_cryptory.get_stock_prices(market="%5EDJI")

# USD/EUR exchange rate
my_cryptory.get_exchange_rates(from_currency="USD", to_currency="EUR")

# get historical commodity prices
my_cryptory.get_metal_prices()

######## Advanced Usage

# generate price correlation matrix
Ejemplo n.º 8
0
    print('Ended portfolio in EUR: {}'.format(
        locale.currency(EUROS, grouping=True)))
    print('% Profit/Loss: {}%'.format(
        round(((EUROS - startingPortfolio) / startingPortfolio) * 100), 2))

#Plotting results
y_axis_breakeven = []
for i in range(0, len(y_axis)):
    y_axis_breakeven.append(startingPortfolio)

#date_1 = datetime.strptime(x_axis[0], "%Y-%m-%d")
#modifiedDate = date_1 + timedelta(days=1)
modifiedDate = x_axis[0]

my_cryptory = Cryptory(
    from_date=modifiedDate,
    to_date=presentDate)  # First element of x_axis = start date of data
priceBTC = list(reversed(
    my_cryptory.extract_bitinfocharts("btc")["btc_price"]))
print(my_cryptory.extract_bitinfocharts("btc"))
print("Length Portfolio: {} ".format(len(y_axis)))
print("Length BTC Pric: {} ".format(len(priceBTC)))
print("Length Break-even: {} ".format(len(y_axis_breakeven)))
print("Start date: {} ".format(x_axis[0]))
print("Start date modified +1: {} ".format(modifiedDate))

#Create dataframe
df = pd.DataFrame({'Portfolio': y_axis})
df['BTC Price'] = priceBTC
df['Break-even'] = y_axis_breakeven
Ejemplo n.º 9
0
from cryptory import Cryptory
import pandas as pd

my_cryptory = Cryptory(from_date="2017-01-01")
pd.options.display.max_rows = 6

all_coins_df = my_cryptory.extract_bitinfocharts("btc")

bit_info_coins = ['btc', 'eth', 'xrp', 'bch', 'ltc']

for coin in bit_info_coins[1:]:
    all_coins_df = all_coins_df.merge(my_cryptory.extract_bitinfocharts(coin),
                                      on='date',
                                      bow='left')

import seaborn as sns
import matplotlib.pyplot as plt
import datetime

fig, ax1 = plt.subplots(1, 1, figsize=(10, 4))

ca = plt.get_cmap('gist_rainbow')

print(my_cryptory.head())
# Help on class Cryptory in module cryptory.cryptory:

my_cryptory.extract_poloniex(coin1="btc", coin2="eth")
Ejemplo n.º 10
0
from cryptory import Cryptory
import pandas as pd
from dtaidistance import dtw
import matplotlib.pyplot as plt
from dtaidistance import dtw_visualisation as dtwvis
from dtw_btc.templates import HeadAndShouldersTop, HeadAndShouldersBottom, TripleTopReversal, \
    DoubleTopReversal, FallingWedge, DoubleBottomReversal, RisingWedge, TripleBottomReversal, \
    BumpAndRunReversal, SymmetricalTriangle
from dtw_btc.utils import normalize, denormalize, normalize_function_paper

cryptory_from_date = Cryptory(from_date="2020-05-01")

history_price_btc = cryptory_from_date.extract_coinmarketcap(
    "bitcoin").sort_values(by=['date'])

list_of_dates = list(history_price_btc['date'])
list_of_closes = list(history_price_btc['close'])

len_list_of_closes = len(list_of_closes)

patterns = [
    HeadAndShouldersTop(),
    HeadAndShouldersBottom(),
    TripleTopReversal(),
    DoubleTopReversal(),
    DoubleBottomReversal(),
    FallingWedge(),
    RisingWedge(),
    TripleBottomReversal(),
    BumpAndRunReversal(),
    SymmetricalTriangle()
Ejemplo n.º 11
0
from cryptory import Cryptory
import matplotlib.dates as mdates
import seaborn as sns
import matplotlib.pyplot as plt
import datetime

my_cryptory = Cryptory(from_date="2017-01-01")

# btc_google = my_cryptory.get_google_trends(kw_list=['bitcoin']).merge(
# my_cryptory.extract_coinmarketcap('bitcoin')[['date','close']], on='date', how='inner')

# eth_google = my_cryptory.get_google_trends(kw_list=['ethereum']).merge(
# my_cryptory.extract_coinmarketcap('ethereum')[['date','close']], on='date', how='inner')

ltc_google = my_cryptory.get_google_trends(kw_list=['litecoin']).merge(
    my_cryptory.extract_coinmarketcap('litecoin')[['date', 'close']],
    on='date',
    how='inner')

iota_google = my_cryptory.get_google_trends(kw_list=['iota']).merge(
    my_cryptory.extract_coinmarketcap('iota')[['date', 'close']],
    on='date',
    how='inner')

# ripple_google = my_cryptory.get_google_trends(kw_list=['ripple']).merge(
# my_cryptory.extract_coinmarketcap('ripple')[['date','close']], on='date', how='inner')

doge_google = my_cryptory.get_google_trends(kw_list=['Dogecoin']).merge(
    my_cryptory.extract_coinmarketcap('Dogecoin')[['date', 'close']],
    on='date',
    how='inner')
Ejemplo n.º 12
0
class MyDataManager():

    def __init__(self, date):
        self.crypto_data = Cryptory(from_date = date)
        self.bitcoin_data = self.crypto_data.extract_coinmarketcap("bitcoin")
        self.sc = MinMaxScaler()


    # Cleans the data to keep only the open column
    def clean_data(self):
        for col in self.bitcoin_data.columns:
            if col != "open":
                del self.bitcoin_data[col]


    # Creates the train data set
    def create_train_data(self):

        self.clean_data()

        training_set = self.bitcoin_data;
        training_set = self.sc.fit_transform(training_set)
        train_data = training_set[365:]  # around 80% of the data is used for training

        # Split the data into x and y
        x_train, y_train = train_data[:len(train_data)-1], train_data[1:]

        return self.format_to_3d(x_train), y_train


    # Creates the test data set
    def create_test_data(self):
        test_set = self.bitcoin_data
        test_set = self.sc.transform(test_set)
        test_data = test_set[:364]

        return test_data


    # Plots the graph
    def plot(self, real_value, model):
        input = real_value
        input = self.sc.fit_transform(input)
        input = np.reshape(input, (364, 1, 1))

        predicted_result = model.predict(input)
        predicted_result = self.sc.inverse_transform(predicted_result)

        print(real_value)

        plt.plot(real_value, color='pink', label='Real Price')
        plt.plot(predicted_result, color='blue', label='Predicted Price')
        plt.title('Bitcoin Prediction')
        plt.xlabel('Time')
        plt.ylabel('Prices')
        plt.legend()
        plt.show()


    # Format a 2D np.array to a 3D array
    def format_to_3d(self, df_to_reshape):
        reshaped_df = np.array(df_to_reshape)
        return np.reshape(reshaped_df, (reshaped_df.shape[0], 1, reshaped_df.shape[1]))
Ejemplo n.º 13
0
 def __init__(self, date):
     self.crypto_data = Cryptory(from_date = date)
     self.bitcoin_data = self.crypto_data.extract_coinmarketcap("bitcoin")
     self.sc = MinMaxScaler()
Ejemplo n.º 14
0
# generate price correlation matrix
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# load package
from cryptory import Cryptory
import datetime

# initialise object
# pull data from start of 2017 to present day
my_cryptory = Cryptory(from_date="2016-01-01")

# get historical bitcoin prices from coinmarketcap
my_cryptory.extract_coinmarketcap("bitcoin")
all_coins_df = my_cryptory.extract_bitinfocharts("btc")
# coins of interest
bitinfocoins = ["btc", "eth", "xrp", "bch", "ltc", "dash", "xmr", "doge"]
for coin in bitinfocoins[1:]:
    all_coins_df = all_coins_df.merge(my_cryptory.extract_bitinfocharts(coin),
                                      on="date",
                                      how="left")
# date column not need for upcoming calculations
all_coins_df = all_coins_df.drop('date', axis=1)
corr = all_coins_df.pct_change().corr(method='pearson')
# fig, ax = plt.subplots(figsize=(7,5))
# sns.heatmap(corr,
#             xticklabels=[col.replace("_price", "") for col in corr.columns.values],
#             yticklabels=[col.replace("_price", "") for col in corr.columns.values],
#             annot_kws={"size": 16})
# plt.show()