Ejemplo n.º 1
0
def js_wp_xsd(xlz, yh_xsd_dd=False):
    dy_rq, dy_jx = js_dy_rq(xlz)
    print('-' * 80)
    print('Generate: items co-rated similarity matrix')
    dy_xsd_sz = {}
    dydyh_sj = cssj(dayinbushu=1000)
    for yh, dys in xlz.items():
        for dy in dys:
            dy_xsd_sz.setdefault(dy, defaultdict(int))
            for dy2 in dys:
                if dy == dy2:
                    continue
                if yh_xsd_dd:
                    dy_xsd_sz[dy][dy2] += 1 / math.log(1 + len(dys))
                else:
                    dy_xsd_sz[dy][dy2] += 1
        dydyh_sj.js_sj()
    print('Generate:items co-rated similarity matrix.(Done)')
    print('-' * 80)
    dydyh_sj.js()
    print('-' * 80)
    print('Calculate: item-item similarity matrix')

    dy_xs_sz_sj = cssj(dayinbushu=1000)
    for dy, zj_wp in dy_xsd_sz.items():
        dy1_cd = dy_rq[dy]
        for dy2, jx in zj_wp.items():
            yh2_cd = dy_rq[dy2]
            dy_xsd_sz[dy][dy2] = jx / math.sqrt(dy1_cd * yh2_cd)
        dy_xs_sz_sj.js_sj()

    print('Calculate:item-item similarity matrix(Done)')
    print('-' * 80)
    dy_xs_sz_sj.js()
    return dy_xsd_sz, dy_rq, dy_jx
Ejemplo n.º 2
0
def jx_yh_xsd(xlsjb, yh_csb_xsd=False):
    print('-' * 80)
    print('Build: movie-users inverse table')
    dydyh = collections.defaultdict(set)
    dyymd = defaultdict(int)

    for yh, dys in xlsjb.items():
        for dy in dys:
            dydyh[dy].add(yh)
            dyymd[dy] += 1
    print('Build: movie-users inverse table(Done)')
    print('-' * 80)

    dy_zh = len(dydyh)
    print('total movie number = %d' % dy_zh)
    print('-' * 80)
    print('Generate:user co-rated movies similarity matrix')
    yhxsd_sz = {}
    dydyh_sj = cssj(dayinbushu=1000)
    for dy, yhm in dydyh.items():
        for yh1 in yhm:
            yhxsd_sz.setdefault(yh1, defaultdict(int))
            for yh2 in yhm:
                if yh1 == yh2:
                    continue
                if yh_csb_xsd:
                    yhxsd_sz[yh1][yh2] += 1 / math.log(1 + len(yhm))
                else:
                    yhxsd_sz[yh1][yh2] += 1
        dydyh_sj.js_sj()
    print('Generate: user co-rated movies similarity matrix(Done)')
    print('-' * 80)
    dydyh_sj.js()
    print('-' * 80)
    print('Calculate matrix: user-user similarity ')
    yh_xsd_sz = cssj(dayinbushu=1000)
    for yh1, zj_yh in yhxsd_sz.items():
        yh1_cd = len(xlsjb[yh1])
        for yh2, js in zj_yh.items():
            yh2_cd = len(xlsjb[yh2])
            yhxsd_sz[yh1][yh2] = js / math.sqrt(yh1_cd * yh2_cd)
        yh_xsd_sz.js_sj()

    print('Calculate: user-user similarity(Done)')
    print('-' * 80)
    yh_xsd_sz.js()
    return yhxsd_sz, dyymd, dy_zh
Ejemplo n.º 3
0
 def yuce(self, csj):
     dy_tj = defaultdict(list)
     print('-' * 80)
     print('start to predict scores ')
     yc_sj = csh.cssj(dayinbushu=500)
     for gd, yh in enumerate(csj):
         jl_sj = self.tuijian(yh)
         dy_tj[yh].append(jl_sj)
         yc_sj.js_sj()
         print('Predict scores(Done)')
         print('-' * 80)
     yc_sj.js()
     return dy_tj
 def yuce(self, csj):
     dytuijian = defaultdict(list)
     print('-' * 80)
     print('start to predict scores ')
     ybyshijian = cssj(dayinbushu=500)
     for ni, yh in enumerate(csj):
         jl_dy = self.tuijian(yh)
         dytuijian[yh].append(jl_dy)
         ybyshijian.js_sj()
     print('Predict scores(Done)')
     print('-' * 80)
     ybyshijian.js()
     return dytuijian
    def cs(self, csj):

        if not self.n_jl_dy or not self.xlj or not self.dy_rqz or not self.dy_hj:
            raise ValueError('Method has not called yet.')
        self.csj = csj
        print('-' * 80)
        print('Start to test recommendation system ')
        weizhi = self.n_jl_dy
        jida = 0
        jl_hj = 0
        cs_hj = 0
        sy_jl_dy = set()
        rqzs = 0

        cs_sj = cssj(dayinbushu=1000)
        for w, yh in enumerate(self.xlj):
            cs_dy = self.csj.get(yh, {})
            jl_dy = self.tuijian(yh)
            for dy in jl_dy:
                if dy in cs_dy:
                    jida += 1
                sy_jl_dy.add(dy)
                rqzs += math.log(1 + self.dy_rqz[dy])
            jl_hj += weizhi
            cs_hj += len(cs_dy)
            cs_sj.js_sj()
        qxd = jida / (1.0 * jl_hj)
        hs = jida / (1.0 * cs_hj)
        fg = len(sy_jl_dy) / (1.0 * self.dy_hj)
        zmd = rqzs / (1.0 * jl_hj)
        f_s=(qxd*hs*2.0)/(qxd+hs)
        print('Run test recommendation system(Done)')
        print('-' * 80)
        cs_sj.js()
        print('-' * 90)
        print('precision=%.4f\trecall=%.4f\tF-Measure1=%.4f\tcoverage=%.4f\tpopularity=%.4f\n' %
              (qxd, hs,f_s, fg, zmd))
        print('-' * 90)
Ejemplo n.º 6
0
 def cs(self, csj):
     if not self.n_jilu_dy or not self.xlji or not self.dy_zmd or not self.dy_jx:
         raise ValueError('Method has not called yet.')
     self.ceshiji = csj
     print('-' * 80)
     print('Start:Test recommendation system ')
     ni = self.n_jilu_dy
     jida = 0
     jilu_jihe = 0
     ceshi_jihe = 0
     sy_jl_dy = set()
     rq_hj = 0
     cs_sj = csh.cssj(dayinbushu=1000)
     for gd, yh in enumerate(self.xlji):
         cs_dy = self.ceshiji.get(yh, {})
         jl_dy = self.tuijian(yh)
         for dy in jl_dy:
             if dy in cs_dy:
                 jida += 1
             sy_jl_dy.add(dy)
             rq_hj += math.log(1 + self.dy_zmd[dy])
         jilu_jihe += ni
         ceshi_jihe += len(cs_dy)
         cs_sj.js_sj()
     xmd = jida / (1.0 * jilu_jihe)
     zhaohui = jida / (1.0 * ceshi_jihe)
     zy = len(sy_jl_dy) / (1.0 * self.dy_jx)
     rqz = rq_hj / (1.0 * jilu_jihe)
     f_s = (xmd * zhaohui * 2.0) / (xmd + zhaohui)
     print('Run test recommendation system(Done)')
     cs_sj.js()
     print('-' * 90)
     print(
         'precision=%.4f\trecall=%.4f\tF-Measure1=%.4f\tcoverage=%.4f\tpopularity=%.4f\n'
         % (xmd, zhaohui, f_s, zy, rqz))
     print('-' * 90)
 def cs(self, csj):
     if not self.n_jl_dy or not self.xlj or not self.dy_zmd or not self.dy_hj:
         raise ValueError('Method has not called yet.')
     self.csj = csj
     print('-' * 80)
     print('Start to test recommendation system ')
     weizhi = self.n_jl_dy
     ddjd = 0
     jl_zs = 0
     cs_zs = 0
     sy_ji_zs = set()
     rq_hj = 0
     ceshishijian = cssj(dayinbushu=1000)
     for ni, yh in enumerate(self.xlj):
         ceshidy = self.csj.get(yh, {})
         jl_dy = self.tuijian(yh)
         for dy in jl_dy:
             if dy in ceshidy:
                 ddjd += 1
             sy_ji_zs.add(dy)
             rq_hj += math.log(1 + self.dy_zmd[dy])
         jl_zs += weizhi
         cs_zs += len(ceshidy)
         ceshishijian.js_sj()
     jqz = ddjd / (1.0 * jl_zs)
     sh = ddjd / (1.0 * cs_zs)
     fg = len(sy_ji_zs) / (1.0 * self.dy_hj)
     zmrq = rq_hj / (1.0 * jl_zs)
     f_s = (jqz * sh * 2.0) / (jqz + sh)
     print('Test recommendation system(Done)')
     ceshishijian.js()
     print('-' * 90)
     print(
         'precision=%.4f\trecall=%.4f\tF-Measure1=%.4f\tcoverage=%.4f\tpopularity=%.4f\n'
         % (jqz, sh, f_s, fg, zmrq))
     print('-' * 90)
Ejemplo n.º 8
0
            print(str(zhi) +":" + dy_ditu[xiangmu])

def jianli_dy_dt(wenjian, shuju):
    jieuo = {}
    with open(wenjian, encoding='unicode_escape') as sjl:
        hangs = sjl.readlines()
        for hang in hangs:
            hdz = hang.strip().split(shuju)
            jieuo[hdz[0]] = hdz[1]
    
    return jieuo



if __name__ == '__main__':
    xt_sj = cssj(danzi="Main Function")
    print('-' * 80)
    print('\t GU JIAKAI 20161795\tWEN JIALI 20174950\t LIU JIAQI 20173122')
    print('-' * 80 + '\n')
    print('\t\tRecommend System for Movielens ')
    print('-' * 70)
    print('\t 1:ml-100k\t2:ml-1m\t3:ml-25m')
    print('-' * 70 + '\n')
    a = int(input("Select Data set:"))
    sjj_mc = None
    mx_mc = None
    if a == 1:
        sjj_mc = 'ml-100k'

    elif a == 2:
        sjj_mc = 'ml-1m'