Ejemplo n.º 1
0
def overlay_vessels_heatmap(imgs, pred_vessel_hm):
    pred_vessel_hm = to_numpy(pred_vessel_hm)
    disp_X_recon_overlay = [
        vis.overlay_heatmap(imgs[i], pred_vessel_hm[i, 0], 1.0)
        for i in range(len(pred_vessel_hm))
    ]
    return disp_X_recon_overlay
Ejemplo n.º 2
0
def visualize_images(X,
                     X_lm_hm,
                     landmarks=None,
                     show_recon=True,
                     show_landmarks=True,
                     show_heatmaps=False,
                     draw_wireframe=False,
                     smoothing_level=2,
                     heatmap_opacity=0.8,
                     f=1):

    if show_recon:
        disp_X = vis.to_disp_images(X, denorm=True)
    else:
        disp_X = vis.to_disp_images(torch.zeros_like(X), denorm=False)
        heatmap_opacity = 1

    if X_lm_hm is not None:
        if smoothing_level > 0:
            X_lm_hm = smooth_heatmaps(X_lm_hm)
        if smoothing_level > 1:
            X_lm_hm = smooth_heatmaps(X_lm_hm)

    if show_heatmaps:
        pred_heatmaps = to_single_channel_heatmap(to_numpy(X_lm_hm))
        pred_heatmaps = [
            cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_CUBIC)
            for im in pred_heatmaps
        ]
        disp_X = [
            vis.overlay_heatmap(disp_X[i], pred_heatmaps[i], heatmap_opacity)
            for i in range(len(pred_heatmaps))
        ]

    if show_landmarks and landmarks is not None:
        pred_color = (0, 255, 255)
        disp_X = vis.add_landmarks_to_images(disp_X,
                                             landmarks,
                                             color=pred_color,
                                             draw_wireframe=draw_wireframe)

    return disp_X
Ejemplo n.º 3
0
def visualize_vessels(images,
                      X_recon,
                      vessel_hm,
                      pred_vessel_hm=None,
                      ds=None,
                      wait=0,
                      horizontal=False,
                      f=1.0,
                      overlay_heatmaps_input=True,
                      overlay_heatmaps_recon=True,
                      scores=None,
                      nimgs=5):

    nimgs = min(nimgs, len(images))
    images = images[:nimgs]
    rows = []

    input_images = vis.to_disp_images(images[:nimgs], denorm=True)
    disp_images = vis.to_disp_images(images[:nimgs], denorm=True)
    disp_images = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in disp_images
    ]
    rows.append(vis.make_grid(disp_images, nCols=nimgs, normalize=False))

    recon_images = vis.to_disp_images(X_recon[:nimgs], denorm=True)
    disp_X_recon = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in recon_images.copy()
    ]

    if vessel_hm is not None and overlay_heatmaps_input:
        vessel_hm = to_numpy(vessel_hm[:nimgs])
        disp_images = [
            vis.overlay_heatmap(disp_images[i], vessel_hm[i, 0], 0.5)
            for i in range(len(vessel_hm))
        ]

    rows.append(vis.make_grid(disp_images, nCols=nimgs, normalize=False))

    if pred_vessel_hm is not None and overlay_heatmaps_recon:
        pred_vessel_hm = to_numpy(pred_vessel_hm[:nimgs])
        disp_X_recon_overlay = [
            vis.overlay_heatmap(disp_X_recon[i], pred_vessel_hm[i, 0], 1.0)
            for i in range(len(pred_vessel_hm))
        ]
        if scores is not None:
            disp_X_recon_overlay = vis.add_error_to_images(
                disp_X_recon_overlay, scores, loc='tr', format_string='{:.3f}')
        rows.append(vis.make_grid(disp_X_recon_overlay, nCols=nimgs))

    rows.append(vis.make_grid(disp_X_recon, nCols=nimgs))

    if horizontal:
        assert (nimgs == 1)
        disp_rows = vis.make_grid(rows, nCols=4)
    else:
        disp_rows = vis.make_grid(rows, nCols=1)

    wnd_title = 'Predicted vessels '
    if ds is not None:
        wnd_title += ds.__class__.__name__
    cv2.imshow(wnd_title, cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
    cv2.waitKey(wait)
Ejemplo n.º 4
0
def visualize_batch(images,
                    landmarks,
                    X_recon,
                    X_lm_hm,
                    lm_preds_max,
                    lm_heatmaps=None,
                    target_images=None,
                    lm_preds_cnn=None,
                    ds=None,
                    wait=0,
                    ssim_maps=None,
                    landmarks_to_draw=None,
                    ocular_norm='outer',
                    horizontal=False,
                    f=1.0,
                    overlay_heatmaps_input=False,
                    overlay_heatmaps_recon=False,
                    clean=False,
                    landmarks_only_outline=range(17),
                    landmarks_no_outline=range(17, 68)):

    gt_color = (0, 255, 0)
    pred_color = (0, 0, 255)
    image_size = images.shape[3]
    assert image_size in [128, 256]

    nimgs = min(10, len(images))
    images = nn.atleast4d(images)[:nimgs]
    num_landmarks = lm_preds_max.shape[1]

    if landmarks_to_draw is None:
        landmarks_to_draw = range(num_landmarks)

    nme_per_lm = None
    if landmarks is None:
        # print('num landmarks', lmcfg.NUM_LANDMARKS)
        lm_gt = np.zeros((nimgs, num_landmarks, 2))
    else:
        lm_gt = nn.atleast3d(to_numpy(landmarks))[:nimgs]
        nme_per_lm = calc_landmark_nme(lm_gt,
                                       lm_preds_max[:nimgs],
                                       ocular_norm=ocular_norm,
                                       image_size=image_size)
        lm_ssim_errs = 1 - calc_landmark_ssim_score(images, X_recon[:nimgs],
                                                    lm_gt)

    lm_confs = None
    # show landmark heatmaps
    pred_heatmaps = None
    if X_lm_hm is not None:
        pred_heatmaps = to_single_channel_heatmap(to_numpy(X_lm_hm[:nimgs]))
        pred_heatmaps = [
            cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
            for im in pred_heatmaps
        ]
        gt_heatmaps = None
        if lm_heatmaps is not None:
            gt_heatmaps = to_single_channel_heatmap(
                to_numpy(lm_heatmaps[:nimgs]))
            gt_heatmaps = np.array([
                cv2.resize(im,
                           None,
                           fx=f,
                           fy=f,
                           interpolation=cv2.INTER_NEAREST)
                for im in gt_heatmaps
            ])
        show_landmark_heatmaps(pred_heatmaps, gt_heatmaps, nimgs, f=1)
        lm_confs = to_numpy(X_lm_hm).reshape(X_lm_hm.shape[0],
                                             X_lm_hm.shape[1], -1).max(axis=2)

    # resize images for display and scale landmarks accordingly
    lm_preds_max = lm_preds_max[:nimgs] * f
    if lm_preds_cnn is not None:
        lm_preds_cnn = lm_preds_cnn[:nimgs] * f
    lm_gt *= f

    input_images = vis.to_disp_images(images[:nimgs], denorm=True)
    if target_images is not None:
        disp_images = vis.to_disp_images(target_images[:nimgs], denorm=True)
    else:
        disp_images = vis.to_disp_images(images[:nimgs], denorm=True)
    disp_images = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in disp_images
    ]

    recon_images = vis.to_disp_images(X_recon[:nimgs], denorm=True)
    disp_X_recon = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in recon_images.copy()
    ]

    # overlay landmarks on input images
    if pred_heatmaps is not None and overlay_heatmaps_input:
        disp_images = [
            vis.overlay_heatmap(disp_images[i], pred_heatmaps[i])
            for i in range(len(pred_heatmaps))
        ]
    if pred_heatmaps is not None and overlay_heatmaps_recon:
        disp_X_recon = [
            vis.overlay_heatmap(disp_X_recon[i], pred_heatmaps[i])
            for i in range(len(pred_heatmaps))
        ]

    #
    # Show input images
    #
    disp_images = vis.add_landmarks_to_images(disp_images,
                                              lm_gt[:nimgs],
                                              color=gt_color)
    disp_images = vis.add_landmarks_to_images(disp_images,
                                              lm_preds_max[:nimgs],
                                              lm_errs=nme_per_lm,
                                              color=pred_color,
                                              draw_wireframe=False,
                                              gt_landmarks=lm_gt,
                                              draw_gt_offsets=True)

    # disp_images = vis.add_landmarks_to_images(disp_images, lm_gt[:nimgs], color=(1,1,1), radius=1,
    #                                           draw_dots=True, draw_wireframe=True, landmarks_to_draw=landmarks_to_draw)
    # disp_images = vis.add_landmarks_to_images(disp_images, lm_preds_max[:nimgs], lm_errs=nme_per_lm,
    #                                           color=(1.0, 0.0, 0.0),
    #                                           draw_dots=True, draw_wireframe=True, radius=1,
    #                                           gt_landmarks=lm_gt, draw_gt_offsets=False,
    #                                           landmarks_to_draw=landmarks_to_draw)

    #
    # Show reconstructions
    #
    X_recon_errs = 255.0 * torch.abs(images - X_recon[:nimgs]).reshape(
        len(images), -1).mean(dim=1)
    if not clean:
        disp_X_recon = vis.add_error_to_images(disp_X_recon[:nimgs],
                                               errors=X_recon_errs,
                                               format_string='{:>4.1f}')

    # modes of heatmaps
    # disp_X_recon = [overlay_heatmap(disp_X_recon[i], pred_heatmaps[i]) for i in range(len(pred_heatmaps))]
    if not clean:
        lm_errs_max = calc_landmark_nme_per_img(lm_gt,
                                                lm_preds_max,
                                                ocular_norm,
                                                landmarks_no_outline,
                                                image_size=image_size)
        lm_errs_max_outline = calc_landmark_nme_per_img(lm_gt,
                                                        lm_preds_max,
                                                        ocular_norm,
                                                        landmarks_only_outline,
                                                        image_size=image_size)
        lm_errs_max_all = calc_landmark_nme_per_img(
            lm_gt,
            lm_preds_max,
            ocular_norm,
            list(landmarks_only_outline) + list(landmarks_no_outline),
            image_size=image_size)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_max,
                                               loc='br-2',
                                               format_string='{:>5.2f}',
                                               vmax=15)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_max_outline,
                                               loc='br-1',
                                               format_string='{:>5.2f}',
                                               vmax=15)
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               lm_errs_max_all,
                                               loc='br',
                                               format_string='{:>5.2f}',
                                               vmax=15)
    disp_X_recon = vis.add_landmarks_to_images(disp_X_recon,
                                               lm_gt,
                                               color=gt_color,
                                               draw_wireframe=True)

    # disp_X_recon = vis.add_landmarks_to_images(disp_X_recon, lm_preds_max[:nimgs],
    #                                            color=pred_color, draw_wireframe=False,
    #                                            lm_errs=nme_per_lm, lm_confs=lm_confs,
    #                                            lm_rec_errs=lm_ssim_errs, gt_landmarks=lm_gt,
    #                                            draw_gt_offsets=True, draw_dots=True)

    disp_X_recon = vis.add_landmarks_to_images(disp_X_recon,
                                               lm_preds_max[:nimgs],
                                               color=pred_color,
                                               draw_wireframe=True,
                                               gt_landmarks=lm_gt,
                                               draw_gt_offsets=True,
                                               lm_errs=nme_per_lm,
                                               draw_dots=True,
                                               radius=2)

    def add_confidences(disp_X_recon, lmids, loc):
        means = lm_confs[:, lmids].mean(axis=1)
        colors = vis.color_map(to_numpy(1 - means),
                               cmap=plt.cm.jet,
                               vmin=0.0,
                               vmax=0.4)
        return vis.add_error_to_images(disp_X_recon,
                                       means,
                                       loc=loc,
                                       format_string='{:>4.2f}',
                                       colors=colors)

    # disp_X_recon = add_confidences(disp_X_recon, lmcfg.LANDMARKS_NO_OUTLINE, 'bm-2')
    # disp_X_recon = add_confidences(disp_X_recon, lmcfg.LANDMARKS_ONLY_OUTLINE, 'bm-1')
    # disp_X_recon = add_confidences(disp_X_recon, lmcfg.ALL_LANDMARKS, 'bm')

    # print ssim errors
    ssim = np.zeros(nimgs)
    for i in range(nimgs):
        ssim[i] = compare_ssim(input_images[i],
                               recon_images[i],
                               data_range=1.0,
                               multichannel=True)
    if not clean:
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               1 - ssim,
                                               loc='bl-1',
                                               format_string='{:>4.2f}',
                                               vmax=0.8,
                                               vmin=0.2)
    # print ssim torch errors
    if ssim_maps is not None and not clean:
        disp_X_recon = vis.add_error_to_images(disp_X_recon,
                                               ssim_maps.reshape(
                                                   len(ssim_maps),
                                                   -1).mean(axis=1),
                                               loc='bl-2',
                                               format_string='{:>4.2f}',
                                               vmin=0.0,
                                               vmax=0.4)

    rows = [vis.make_grid(disp_images, nCols=nimgs, normalize=False)]
    rows.append(vis.make_grid(disp_X_recon, nCols=nimgs))

    if ssim_maps is not None:
        disp_ssim_maps = to_numpy(
            nn.denormalized(ssim_maps)[:nimgs].transpose(0, 2, 3, 1))
        for i in range(len(disp_ssim_maps)):
            disp_ssim_maps[i] = vis.color_map(disp_ssim_maps[i].mean(axis=2),
                                              vmin=0.0,
                                              vmax=2.0)
        grid_ssim_maps = vis.make_grid(disp_ssim_maps, nCols=nimgs, fx=f, fy=f)
        cv2.imshow('ssim errors',
                   cv2.cvtColor(grid_ssim_maps, cv2.COLOR_RGB2BGR))

    if horizontal:
        assert (nimgs == 1)
        disp_rows = vis.make_grid(rows, nCols=2)
    else:
        disp_rows = vis.make_grid(rows, nCols=1)
    wnd_title = 'Predicted Landmarks '
    if ds is not None:
        wnd_title += ds.__class__.__name__
    cv2.imshow(wnd_title, cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
    cv2.waitKey(wait)
Ejemplo n.º 5
0
def visualize_batch_CVPR(images,
                         landmarks,
                         X_recon,
                         X_lm_hm,
                         lm_preds,
                         show_recon=True,
                         lm_heatmaps=None,
                         ds=None,
                         wait=0,
                         horizontal=False,
                         f=1.0,
                         radius=2,
                         draw_wireframes=False):

    gt_color = (0, 255, 0)
    pred_color = (0, 255, 255)
    # pred_color = (255,0,0)

    nimgs = min(10, len(images))
    images = nn.atleast4d(images)[:nimgs]
    num_landmarks = lm_preds.shape[1]

    # if landmarks is None:
    #     print('num landmarks', num_landmarks)
    #     lm_gt = np.zeros((nimgs, num_landmarks, 2))
    # else:

    # show landmark heatmaps
    pred_heatmaps = None
    if X_lm_hm is not None:
        pred_heatmaps = to_single_channel_heatmap(to_numpy(X_lm_hm[:nimgs]))
        pred_heatmaps = [
            cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
            for im in pred_heatmaps
        ]
        gt_heatmaps = None
        if lm_heatmaps is not None:
            gt_heatmaps = to_single_channel_heatmap(
                to_numpy(lm_heatmaps[:nimgs]))
            gt_heatmaps = np.array([
                cv2.resize(im,
                           None,
                           fx=f,
                           fy=f,
                           interpolation=cv2.INTER_NEAREST)
                for im in gt_heatmaps
            ])
        show_landmark_heatmaps(pred_heatmaps, gt_heatmaps, nimgs, f=1)
        lm_confs = to_numpy(X_lm_hm).reshape(X_lm_hm.shape[0],
                                             X_lm_hm.shape[1], -1).max(axis=2)

    # resize images for display and scale landmarks accordingly
    lm_preds = lm_preds[:nimgs] * f

    rows = []

    disp_images = vis.to_disp_images(images[:nimgs], denorm=True)
    disp_images = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in disp_images
    ]
    rows.append(vis.make_grid(disp_images, nCols=nimgs, normalize=False))

    heatmap_opacity = 1.0
    if show_recon:
        recon_images = vis.to_disp_images(X_recon[:nimgs], denorm=True)
    else:
        recon_images = vis.to_disp_images(torch.ones_like(X_recon[:nimgs]),
                                          denorm=False)
        heatmap_opacity = 1

    disp_X_recon = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in recon_images.copy()
    ]
    rows.append(vis.make_grid(disp_X_recon, nCols=nimgs))

    # overlay landmarks on images
    disp_X_recon_hm = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in recon_images.copy()
    ]
    disp_X_recon_hm = [
        vis.overlay_heatmap(disp_X_recon_hm[i], pred_heatmaps[i],
                            heatmap_opacity) for i in range(len(pred_heatmaps))
    ]
    rows.append(vis.make_grid(disp_X_recon_hm, nCols=nimgs))

    # reconstructions with prediction
    disp_X_recon_pred = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in recon_images.copy()
    ]
    disp_X_recon_pred = vis.add_landmarks_to_images(disp_X_recon_pred,
                                                    lm_preds,
                                                    color=pred_color,
                                                    radius=radius)
    rows.append(vis.make_grid(disp_X_recon_pred, nCols=nimgs))

    # reconstructions with ground truth (if gt available)
    if landmarks is not None:
        lm_gt = nn.atleast3d(to_numpy(landmarks))[:nimgs] * f
        disp_X_recon_gt = [
            cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
            for im in recon_images.copy()
        ]
        disp_X_recon_gt = vis.add_landmarks_to_images(disp_X_recon_gt,
                                                      lm_gt,
                                                      color=gt_color,
                                                      radius=radius)
        rows.append(vis.make_grid(disp_X_recon_gt, nCols=nimgs))

    # input images with prediction (and ground truth)
    disp_images_pred = vis.to_disp_images(images[:nimgs], denorm=True)
    disp_images_pred = [
        cv2.resize(im, None, fx=f, fy=f, interpolation=cv2.INTER_NEAREST)
        for im in disp_images_pred
    ]
    # disp_images_pred = vis.add_landmarks_to_images(disp_images_pred, lm_gt, color=gt_color, radius=radius)
    disp_images_pred = vis.add_landmarks_to_images(
        disp_images_pred,
        lm_preds,
        color=pred_color,
        radius=radius,
        draw_wireframe=draw_wireframes)
    rows.append(vis.make_grid(disp_images_pred, nCols=nimgs))

    if horizontal:
        assert (nimgs == 1)
        disp_rows = vis.make_grid(rows, nCols=len(rows))
    else:
        disp_rows = vis.make_grid(rows, nCols=1)
    wnd_title = 'recon errors '
    if ds is not None:
        wnd_title += ds.__class__.__name__
    cv2.imshow(wnd_title, cv2.cvtColor(disp_rows, cv2.COLOR_RGB2BGR))
    cv2.waitKey(wait)