Ejemplo n.º 1
0
def test_camera_calibrator(example_event):
    telid = list(example_event.r0.tel)[0]

    calibrator = CameraCalibrator()

    calibrator.calibrate(example_event)
    image = example_event.dl1.tel[telid].image
    assert image is not None
Ejemplo n.º 2
0
def test_camera_calibrator(example_event):
    telid = 11

    calibrator = CameraCalibrator(r1_product="HESSIOR1Calibrator")

    calibrator.calibrate(example_event)
    image = example_event.dl1.tel[telid].image
    assert_allclose(image[0, 0], -2.216, 1e-3)
Ejemplo n.º 3
0
def test_camera_calibrator(example_event):
    telid = 11

    calibrator = CameraCalibrator(r1_product="HESSIOR1Calibrator")

    calibrator.calibrate(example_event)
    image = example_event.dl1.tel[telid].image
    assert_allclose(image[0, 0], -2.216, 1e-3)
Ejemplo n.º 4
0
def test_camera_calibrator(test_event):
    event = deepcopy(test_event) # so we don't modify the test event
    telid = 11

    calibrator = CameraCalibrator(r1_product="HESSIOR1Calibrator")

    calibrator.calibrate(event)
    image = event.dl1.tel[telid].image
    assert_allclose(image[0, 0], -2.216, 1e-3)
Ejemplo n.º 5
0
def test_camera_calibrator():
    event = get_test_event()
    telid = 11

    calibrator = CameraCalibrator(None, None)

    calibrator.calibrate(event)
    image = event.dl1.tel[telid].image
    assert_allclose(image[0, 0], -2.216, 1e-3)
Ejemplo n.º 6
0
def test_camera_calibrator():
    event = get_test_event()
    telid = 11

    calibrator = CameraCalibrator(None, None)

    calibrator.calibrate(event)
    image = event.dl1.tel[telid].image
    assert_allclose(image[0, 0], -2.216, 1e-3)
Ejemplo n.º 7
0
def analyze_ctapipe():
    print("starting ctapipe.")
    gamma = FileReader(
        "/lustre/fs21/group/cta/prod3b/prod3b-paranal20deg/gamma_onSource/gamma_20deg_0deg_run624___cta-prod3_desert-2150m-Paranal-merged.simtel.gz",
        "gamma")
    gamma.read_files()

    trace_width = {
        "ASTRICam": (10, 5),
        "FlashCam": (4, 2),
        "LSTCam": (4, 2),
        "NectarCam": (6, 3),
        "DigiCam": (4, 2),
        "CHEC": (8, 4),
        "SCTCam": (6, 3)
    }

    # from Tino
    pe_thresh = {"ASTRICam": 14, "LSTCam": 100, "NectarCam": 190}

    #integrators = ['GlobalPeakIntegrator', 'LocalPeakIntegrator', 'NeighbourPeakIntegrator', 'AverageWfPeakIntegrator']
    #cleaners = ['NullWaveformCleaner', 'CHECMWaveformCleanerAverage', 'CHECMWaveformCleanerLocal']
    for integrator in ['NeighbourPeakIntegrator']:
        i = 0
        for event in gamma.source:
            i += 1
            if not event.r0.event_id in event_IDs:
                # continue with next event
                continue
            else:
                for tel in event.r0.tels_with_data:
                    camera = event.inst.subarray.tel[tel].camera

                    cfg = Config()
                    cfg["ChargeExtractorFactory"]["product"] = integrator
                    cfg["ChargeExtractorFactory"][
                        "window_width"] = trace_width[camera.cam_id][0]
                    cfg["ChargeExtractorFactory"][
                        "window_shift"] = trace_width[camera.cam_id][1]

                    event.dl1.tel[tel].reset()
                    # set up calibrator.
                    calibrator = CameraCalibrator(
                        r1_product="HESSIOR1Calibrator", config=cfg)
                    calibrator.calibrate(event)

                    #####################################
                    # Tino's solution for gain selection
                    if (camera.cam_id == np.array(list(
                            pe_thresh.keys()))).any():
                        image = event.dl1.tel[tel].image
                        image = pick_gain_channel(image, camera.cam_id,
                                                  pe_thresh)
                    else:
                        image = event.dl1.tel[tel].image
                        image = np.reshape(image[0], np.shape(image)[1])

                    # image = np.reshape(image[0], np.shape(image)[1])

                    EventID = [int(event.r0.event_id)] * len(image)
                    TelescopeID = [int(tel)] * len(image)
                    cameras = [event.inst.subarray.tel[tel].camera.cam_id
                               ] * len(image)
                    PixelID = np.arange(len(image))
                    charge = image
                    new_df = pd.DataFrame(np.transpose(
                        [EventID, TelescopeID, PixelID, charge, cameras]),
                                          columns=[
                                              "EventID", "TelescopeID",
                                              "PixelID", "charge", "cameras"
                                          ])

                    try:
                        ctapipe_charge = ctapipe_charge.append(
                            new_df, ignore_index=True)
                    except (TypeError, NameError):
                        ctapipe_charge = new_df

                print("{:.2f}% finished".format((i / len(event_IDs)) * 100))

    ctapipe_charge.to_csv('ctapipe_charge.csv', sep=",")
    return ctapipe_charge
Ejemplo n.º 8
0
class DisplayDL1Calib(Tool):
    name = "DisplayDL1Calib"
    description = "Calibrate dl0 data to dl1, and plot the photoelectron " \
                  "images."

    telescope = Int(None,
                    allow_none=True,
                    help='Telescope to view. Set to None to display all '
                    'telescopes.').tag(config=True)

    aliases = Dict(
        dict(f='EventFileReaderFactory.input_path',
             r='EventFileReaderFactory.reader',
             max_events='EventFileReaderFactory.max_events',
             extractor='ChargeExtractorFactory.extractor',
             window_width='ChargeExtractorFactory.window_width',
             t0='ChargeExtractorFactory.t0',
             window_shift='ChargeExtractorFactory.window_shift',
             sig_amp_cut_HG='ChargeExtractorFactory.sig_amp_cut_HG',
             sig_amp_cut_LG='ChargeExtractorFactory.sig_amp_cut_LG',
             lwt='ChargeExtractorFactory.lwt',
             clip_amplitude='CameraDL1Calibrator.clip_amplitude',
             T='DisplayDL1Calib.telescope',
             O='ImagePlotter.output_path'))
    flags = Dict(
        dict(D=({
            'ImagePlotter': {
                'display': True
            }
        }, "Display the photoelectron images on-screen as they "
                "are produced.")))
    classes = List([
        EventFileReaderFactory, ChargeExtractorFactory, CameraDL1Calibrator,
        ImagePlotter
    ])

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.reader = None
        self.calibrator = None
        self.plotter = None

    def setup(self):
        self.log_format = "%(levelname)s: %(message)s [%(name)s.%(funcName)s]"
        kwargs = dict(config=self.config, tool=self)

        reader_factory = EventFileReaderFactory(**kwargs)
        reader_class = reader_factory.get_class()
        self.reader = reader_class(**kwargs)

        self.calibrator = CameraCalibrator(origin=self.reader.origin, **kwargs)

        self.plotter = ImagePlotter(**kwargs)

    def start(self):
        source = self.reader.read()
        for event in source:
            self.calibrator.calibrate(event)

            tel_list = event.r0.tels_with_data

            if self.telescope:
                if self.telescope not in tel_list:
                    continue
                tel_list = [self.telescope]
            for telid in tel_list:
                self.plotter.plot(event, telid)

    def finish(self):
        self.plotter.finish()
Ejemplo n.º 9
0
class DisplayDL1Calib(Tool):
    name = "DisplayDL1Calib"
    description = "Calibrate dl0 data to dl1, and plot the photoelectron " \
                  "images."

    telescope = Int(None, allow_none=True,
                    help='Telescope to view. Set to None to display all '
                         'telescopes.').tag(config=True)

    aliases = Dict(dict(f='EventFileReaderFactory.input_path',
                        r='EventFileReaderFactory.reader',
                        max_events='EventFileReaderFactory.max_events',
                        extractor='ChargeExtractorFactory.extractor',
                        window_width='ChargeExtractorFactory.window_width',
                        t0='ChargeExtractorFactory.t0',
                        window_shift='ChargeExtractorFactory.window_shift',
                        sig_amp_cut_HG='ChargeExtractorFactory.sig_amp_cut_HG',
                        sig_amp_cut_LG='ChargeExtractorFactory.sig_amp_cut_LG',
                        lwt='ChargeExtractorFactory.lwt',
                        clip_amplitude='CameraDL1Calibrator.clip_amplitude',
                        T='DisplayDL1Calib.telescope',
                        O='ImagePlotter.output_path'
                        ))
    flags = Dict(dict(D=({'ImagePlotter': {'display': True}},
                         "Display the photoelectron images on-screen as they "
                         "are produced.")
                      ))
    classes = List([EventFileReaderFactory,
                    ChargeExtractorFactory,
                    CameraDL1Calibrator,
                    ImagePlotter
                    ])

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.reader = None
        self.calibrator = None
        self.plotter = None

    def setup(self):
        self.log_format = "%(levelname)s: %(message)s [%(name)s.%(funcName)s]"
        kwargs = dict(config=self.config, tool=self)

        reader_factory = EventFileReaderFactory(**kwargs)
        reader_class = reader_factory.get_class()
        self.reader = reader_class(**kwargs)

        self.calibrator = CameraCalibrator(origin=self.reader.origin, **kwargs)

        self.plotter = ImagePlotter(**kwargs)

    def start(self):
        source = self.reader.read()
        for event in source:
            self.calibrator.calibrate(event)

            tel_list = event.r0.tels_with_data

            if self.telescope:
                if self.telescope not in tel_list:
                    continue
                tel_list = [self.telescope]
            for telid in tel_list:
                self.plotter.plot(event, telid)

    def finish(self):
        self.plotter.finish()
Ejemplo n.º 10
0
    def prepare(self, particles, hillas=True, subarray=np.arange(600)):
        ''' Performs the processing of the images:
			calibration perfoming conversion from r0 to dl1
			image cleaning using tailcut_cleaning
			image parametrization with Hillas parameters
			
			Fills the dicts for clean_images and hillas moments
		'''
        # Input
        #######
        # particles - array of konsta_cta.readdata.FileReader
        #

        self.particles = particles
        self.geoms, self.geoms_unique = self.get_camera_geoms()

        # loop through all particle types
        for particle in self.particles:
            dtype = particle.datatype

            # count number of images and number after cleaning
            self.sum_images[dtype] = 0
            self.sum_clean_images[dtype] = 0

            # dict to store the hisograms
            self.histograms = {}
            # loop through all events
            for event in particle.source:

                event_id = event.dl0.event_id
                n_images = 0
                n_clean_images = 0

                # count for each camera individually
                images_cams = {}
                clean_images_cams = {}

                self.mc_energy[dtype, event_id] = event.mc.energy
                # loop through all telescopes with data
                for tel_id in event.r0.tels_with_data:
                    if type(subarray[0]) != str:
                        subarray = [str(x) for x in subarray]

                    if str(tel_id) in subarray:
                        pass
                    else:
                        continue

                    n_images += 1
                    # get camera information
                    camera = event.inst.subarray.tel[tel_id].camera

                    try:
                        # check if key already exists. if not initialize it with value 0
                        _im = images_cams[camera.cam_id]
                        _im = clean_images_cams[camera.cam_id]
                    except KeyError:
                        images_cams[camera.cam_id] = 0
                        clean_images_cams[camera.cam_id] = 0

                    # count for each camera individually
                    images_cams[camera.cam_id] += 1

                    cfg = Config()
                    cfg["ChargeExtractorFactory"]["product"] = self.integrator
                    cfg["ChargeExtractorFactory"][
                        "window_width"] = self.trace_width[camera.cam_id][0]
                    cfg["ChargeExtractorFactory"][
                        "window_shift"] = self.trace_width[camera.cam_id][1]
                    cfg['WaveformCleanerFactory']['product'] = self.cleaner

                    # usually all cameras are calibrated at once with the same camera.
                    # In order to force a racalculation to use the differen width and
                    # shift of the camera of this telescope, dl1 container will be reset
                    # to default at each iteration.
                    #
                    #Probably it is not even needed to reset this, as the container
                    #is refilled anyway.
                    event.dl1.tel[tel_id].reset()
                    # danger: The resulting calibrated event doesn't contain the right
                    # extracted charges for all cameras in the end as it seems like
                    # the dl1 images are overwirtten each time so that, the charges,
                    # extracted at the last telescope iteration will be contained in the
                    # dl1 container.
                    # As I'm wirting out all the required information for the telescope
                    # within this loop, this should not be much of a problem for now, but
                    # in the future a appropriate way to work arround this is required.

                    # set up calibrator.
                    calibrator = CameraCalibrator(r1_product=self.r1,
                                                  config=cfg)

                    # calibrate event
                    calibrator.calibrate(event)

                    ######################################
                    # create output for comparison plots #
                    ######################################

                    cam_id = camera.cam_id
                    number_gains = event.dl1.tel[tel_id].image.shape[0]

                    # create dict for the camera on first appearance
                    try:
                        _hist = self.histograms[cam_id]
                    except KeyError:
                        self.histograms[cam_id] = {}

                    # fill histograms and merge for all events dependent on gain

                    for gain, label in zip(range(number_gains),
                                           ["gain1", "gain2"]):
                        image = np.array(event.dl1.tel[tel_id].image[gain])
                        # only positive charges

                        hist_lower = len(image[image > np.power(10., -1.)])
                        hist_higher = len(image[image > np.power(10., 4.)])

                        image = image[image > 0]
                        logimage = np.log10(image)
                        hist = np.histogram(logimage, range=[-1, 4], bins=100)

                        # store the values outside of range for sanity check
                        _hist = np.append(hist_lower, hist[0])
                        _hist = np.append(_hist, hist_higher)
                        _bins = np.append(-1000, hist[1])
                        _bins = np.append(_bins, 1000)
                        hist = (_hist, _bins)

                        try:
                            self.histograms[cam_id][label] = (
                                self.histograms[cam_id][label][0] + hist[0],
                                self.histograms[cam_id][label][1])
                        except KeyError:
                            self.histograms[cam_id][label] = hist

                    #####################################
                    # Tino's solution for gain selection
                    if (camera.cam_id == np.array(list(
                            self.pe_thresh.keys()))).any():
                        image = event.dl1.tel[tel_id].image
                        image = self.pick_gain_channel(image, camera.cam_id)
                    else:
                        image = event.dl1.tel[tel_id].image
                        image = np.reshape(image[0], np.shape(image)[1])

                    ######################
                    # image cleaning
                    # Threshold values adapted from Tino's repository
                    mask = tailcuts_clean(
                        self.geoms[tel_id],
                        image,
                        picture_thresh=self.tail_thresholds[camera.cam_id][1],
                        boundary_thresh=self.tail_thresholds[camera.cam_id][0],
                        min_number_picture_neighbors=0)

                    try:
                        temp_list
                    except NameError:
                        temp_list = []

                    if not (camera.cam_id in temp_list):
                        temp_list.append(camera.cam_id)
                        print("Threshold {camera}: {threshold}".format(
                            camera=camera.cam_id,
                            threshold=self.tail_thresholds[camera.cam_id]))

                    number_pixels = np.count_nonzero(mask)

                    # drop images that didn't survive image cleaning
                    if any(mask == True):
                        n_clean_images += 1
                        self.clean_images[dtype, event_id,
                                          tel_id] = np.copy(image)
                        # set rejected pixels to zero
                        self.clean_images[dtype, event_id, tel_id][~mask] = 0

                        # count for each camera individually
                        try:
                            clean_images_cams[camera.cam_id] += 1
                        except KeyError:
                            clean_images_cams[camera.cam_id] = 1

                    ### hillas parametrization
                        if hillas:
                            hillas_moments = hillas_parameters(
                                self.geoms[tel_id],
                                self.clean_images[dtype, event_id,
                                                  tel_id], True)

                            self.number_pixels.append(number_pixels)
                            self.energy.append(event.mc.energy.base)
                            self.size.append(hillas_moments.intensity)
                            self.length.append(hillas_moments.length)
                            self.width.append(hillas_moments.width)
                            self.skewness.append(hillas_moments.skewness)
                            self.camera.append(camera.cam_id)
                            self.core_x.append(event.mc.core_x.base)
                            self.core_y.append(event.mc.core_y.base)
                        else:
                            pass

                # count number of images at trigge level and after cleaning
                # summary:
                self.sum_images[dtype] += n_images
                self.sum_clean_images[dtype] += n_clean_images
                # per event:
                self.core_x2.append(event.mc.core_x.base)
                self.core_y2.append(event.mc.core_y.base)
                self.energy2.append(event.mc.energy.base)
                self.n_images.append(float(n_images))
                self.n_clean_images.append(float(n_clean_images))

                for cam in images_cams.keys():
                    try:
                        self.images_cams[cam].append(float(images_cams[cam]))
                        self.clean_images_cams[cam].append(
                            float(clean_images_cams[cam]))
                    except:
                        self.images_cams[cam] = [float(images_cams[cam])]
                        self.clean_images_cams[cam] = [
                            float(clean_images_cams[cam])
                        ]

            print("Processed {} images for datatype {}. Images "
                  "that didn't survive cleaning: {}".format(
                      self.sum_images[dtype], dtype,
                      self.sum_images[dtype] - self.sum_clean_images[dtype]))

        self.get_keys()
Ejemplo n.º 11
0
class PrepareList(Cutter):
    '''
    Prepare a feature list to save to table. It takes an event, does the
    calibration, image cleaning, parametrization and reconstruction.
    From this some basic features will be extracted and written to the file
    which later on can be used for training of the classifiers or energy
    regressors.

    test
    '''

    true_az = {}
    true_alt = {}

    max_signal = {}
    tot_signal = 0
    impact = {}

    def __init__(self,
                 event,
                 telescope_list,
                 camera_types,
                 ChargeExtration,
                 pe_thresh,
                 min_neighbors,
                 tail_thresholds,
                 DirReco,
                 quality_cuts,
                 LUT=None):
        super().__init__()
        '''
        Parmeters
        ---------
        event : ctapipe event container
        calibrator : ctapipe camera calibrator
        reconstructor : ctapipe hillas reconstructor
        telescope_list : list with telescope configuration or "all"
        pe_thresh : dict with thresholds for gain selection
        tail_thresholds : dict with thresholds for image cleaning
        quality_cuts : dict containing quality cuts
        canera_types : list with camera types to analyze
        '''
        self.event = event
        self.telescope_list = telescope_list
        self.pe_thresh = pe_thresh
        self.min_neighbors = min_neighbors
        self.tail_thresholds = tail_thresholds
        self.quality_cuts = quality_cuts
        self.camera_types = camera_types
        self.dirreco = DirReco
        self.LUTgenerator = LUT

        if (self.dirreco["weights"] == "LUT") | (self.dirreco["weights"]
                                                 == "doublepass"):
            self.weights = {}
        else:
            self.weights = None

        self.hillas_dict = {}
        self.camera_dict = {}
        self.edge_pixels = {}

        # configurations for calibrator
        cfg = Config()
        cfg["ChargeExtractorFactory"]["product"] = \
            ChargeExtration["ChargeExtractorProduct"]
        cfg['WaveformCleanerFactory']['product'] = \
            ChargeExtration["WaveformCleanerProduct"]

        self.calibrator = CameraCalibrator(r1_product="HESSIOR1Calibrator",
                                           config=cfg)  # calibration

        self.reconstructor = HillasReconstructor()  # direction

    def get_impact(self, hillas_dict):
        '''
        calculate impact parameters for all telescopes that were
        used for parametrization.

        Paremeters
        ----------
        hillas_dict : dict with hillas HillasParameterContainers

        Returnes
        --------
        impact : impact parameter or NaN if calculation failed
        '''

        # check if event was prepared before
        try:
            assert self.reco_result
        except AssertionError:
            self.prepare()

        impact = {}
        for tel_id in hillas_dict.keys():
            try:
                pred_core = np.array([
                    self.reco_result.core_x.value,
                    self.reco_result.core_y.value
                ]) * u.m
                # tel_coords start at 0 instead of 1...
                tel_position = np.array([
                    self.event.inst.subarray.tel_coords[tel_id - 1].x.value,
                    self.event.inst.subarray.tel_coords[tel_id - 1].y.value
                ]) * u.m
                impact[tel_id] = linalg.length(pred_core - tel_position)
            except AttributeError:
                impact[tel_id] = np.nan

        return impact

    def get_offangle(self, tel_id, direction="reco"):
        '''
        Get the angular offset between the reconstructed direction and the
        pointing direction of the telescope.

        Parameters
        ----------
        tel_id : integer
            Telecope ID
        true_off : string
            if "mc", the true MC direction is taken for calculation. Otherwise,
            if "reco" the reconstructed value will be taken

        Returns
        -------
        off_angles : dictionary
            dictionary with tel_ids as keys and the offangle as entries.
        '''
        if direction == "reco":
            off_angle = angular_separation(
                self.event.mc.tel[tel_id].azimuth_raw * u.rad,
                self.event.mc.tel[tel_id].altitude_raw * u.rad,
                self.reco_result.az, self.reco_result.alt)
        elif direction == "mc":
            off_angle = angular_separation(
                self.event.mc.tel[tel_id].azimuth_raw * u.rad,
                self.event.mc.tel[tel_id].altitude_raw * u.rad,
                self.event.mc.az, self.event.mc.alt)

        return off_angle

    def get_weight(self, method, camera, tel_id, hillas_par, offangle=None):
        """
        Get the weighting for HillasReconustructor. Possible methods are
        'default', which will fall back to the standard weighting applied
        in capipe, 'LUT' which will take the weights from a LUT and
        'doublepass' which might be used for diffuse simulations. In this
        case it returns the weights for the first pass.

        method : sting
            method to get the weighting.
        camera: CameraDescription
        tel_id: integer
        hillas_par: HillasParameterContainer
        """
        if method == "default":
            pass

        elif method == "LUT":
            if np.isnan(hillas_par.width) & (not np.isnan(hillas_par.length)):
                hillas_par.width = 0 * u.m

            self.weights[tel_id] = self.LUTgenerator.get_weight_from_LUT(
                hillas_par,
                camera.cam_id,
                min_stat=self.dirreco["min_stat"],
                ratio_cut=self.dirreco["wl_ratio_cut"][camera.cam_id])

        elif method == "doublepass":
            # first pass with default weighting
            if np.isnan(hillas_par.width) & (not np.isnan(hillas_par.length)):
                hillas_par.width = 0 * u.m
            self.weights[tel_id] = hillas_par.intensity * (
                1 * u.m + hillas_par.length) / (1 * u.m + hillas_par.width)

        elif method == "second_pass":
            # weights for second pass
            self.weights[
                tel_id] = self.LUTgenerator.get_weight_from_diffuse_LUT(
                    self.hillas_dict[tel_id],
                    offangle,
                    camera.cam_id,
                    min_stat=self.dirreco["min_stat"],
                    ratio_cut=self.dirreco["wl_ratio_cut"][camera.cam_id])

        else:
            raise KeyError("Weighting method {} not known.".format(method))

    def prepare(self):
        '''
        Prepare event performimng calibration, image cleaning,
        hillas parametrization, hillas intersection for the single
        event. Additionally, the impact distance will be calculated.
        '''

        tels_per_type = {}
        no_weight = []

        # calibrate event
        self.calibrator.calibrate(self.event)

        # loop over all telescopeswith data in it
        for tel_id in self.event.r0.tels_with_data:

            # check if telescope is selected for analysis
            # This also could be done already in event_source when reading th data
            if (tel_id in self.telescope_list) | (self.telescope_list
                                                  == "all"):
                pass
            else:
                continue

            # get camera information
            camera = self.event.inst.subarray.tel[tel_id].camera
            self.camera_dict[tel_id] = camera

            image = self.event.dl1.tel[tel_id].image

            if camera.cam_id in self.pe_thresh.keys():
                image, select = pick_gain_channel(
                    image, self.pe_thresh[camera.cam_id], True)
            else:
                image = np.squeeze(image)

            # image cleaning
            mask = tailcuts_clean(
                camera,
                image,
                picture_thresh=self.tail_thresholds[camera.cam_id][1],
                boundary_thresh=self.tail_thresholds[camera.cam_id][0],
                min_number_picture_neighbors=self.min_neighbors)

            # go to next telescope if no pixels survived cleaning
            if not any(mask):
                continue

            cleaned_image = np.copy(image)
            cleaned_image[~mask] = 0

            # calculate the hillas parameters
            hillas_par = hillas_parameters(camera, cleaned_image)

            # quality cuts
            leakage = leakage = self.leakage_cut(
                camera=camera,
                hillas_parameters=hillas_par,
                radius=self.quality_cuts["leakage_cut"]["radius"],
                max_dist=self.quality_cuts["leakage_cut"]["dist"],
                image=cleaned_image,
                rows=self.quality_cuts["leakage_cut"]["rows"],
                fraction=self.quality_cuts["leakage_cut"]["frac"],
                method=self.quality_cuts["leakage_cut"]["method"],
            )

            size = self.size_cut(hillas_par, self.quality_cuts["size"])
            if not (leakage & size):
                # size or leakage cuts not passed
                continue

            # get the weighting for HillasReconstructor
            try:
                self.get_weight(self.dirreco["weights"], camera, tel_id,
                                hillas_par)
            except LookupFailedError:
                # this telescope will be ignored, should only happen for method LUT here
                no_weight.append(tel_id)
                continue

            self.hillas_dict[tel_id] = hillas_par
            self.max_signal[tel_id] = np.max(cleaned_image)  # brightest pix

            try:
                tels_per_type[camera.cam_id].append(tel_id)
            except KeyError:
                tels_per_type[camera.cam_id] = [tel_id]

        try:
            assert tels_per_type
        except AssertionError:
            raise TooFewTelescopesException("No image survived the leakage "
                                            "or size cuts.")

        # collect some additional information
        for tel_id in self.hillas_dict:
            self.tot_signal += self.hillas_dict[tel_id].intensity  # total size

            self.true_az[
                tel_id] = self.event.mc.tel[tel_id].azimuth_raw * u.rad
            self.true_alt[
                tel_id] = self.event.mc.tel[tel_id].altitude_raw * u.rad

        # wil raise exception if cut was not passed
        # self.multiplicity_cut(self.quality_cuts["multiplicity"]["cuts"],
        #                      tels_per_type, method=self.quality_cuts["multiplicity"]["method"])

        if self.dirreco["weights"] == "LUT":
            # remove telescopes withough weights
            print("Removed {} of {} telescopes due LUT problems".format(
                len(no_weight),
                len(self.hillas_dict) + len(no_weight)))

        # do Hillas reconstruction
        self.reco_result = self.reconstructor.predict(self.hillas_dict,
                                                      self.event.inst,
                                                      self.true_alt,
                                                      self.true_az,
                                                      ext_weight=self.weights)

        if self.dirreco["weights"] == "doublepass":
            # take the reconstructed direction to get an estimate of the offangle and
            # get weights from the second pass from the diffuse LUT.
            self.weights = {}  # reset the weights from earlier
            no_weight = []
            for tel_id in self.hillas_dict:
                predicted_offangle = self.get_offangle(tel_id,
                                                       direction="reco")
                predicted_offangle = predicted_offangle.to(u.deg).value

                camera = self.camera_dict[tel_id]  # reload camera_information

                # get the weighting for HillasReconstructor
                try:
                    self.get_weight("second_pass", camera, tel_id,
                                    self.hillas_dict[tel_id],
                                    predicted_offangle)
                except LookupFailedError:
                    no_weight.append(tel_id)

            print("Removed {} of {} telescopes due LUT problems".format(
                len(no_weight), len(self.hillas_dict)))

            # remove those types from tels_per_type
            for tel_id in no_weight:
                del self.hillas_dict[tel_id]
                for cam_id in tels_per_type:
                    if tel_id in tels_per_type[cam_id]:
                        index = np.where(
                            np.array(tels_per_type[cam_id]) == tel_id)
                        tels_per_type[cam_id].pop(int(
                            index[0]))  # remove from list

            # redo the multiplicity cut to check if it still fulfilled
            # self.multiplicity_cut(self.quality_cuts["multiplicity"]["cuts"], tels_per_type,
            #                       method=self.quality_cuts["multiplicity"]["method"])

            # do the second pass with new weights
            self.reco_result = self.reconstructor.predict(
                self.hillas_dict,
                self.event.inst,
                self.true_alt,
                self.true_az,
                ext_weight=self.weights)

        # Number of telescopes triggered per type
        self.n_tels_per_type = {
            tel: len(tels_per_type[tel])
            for tel in tels_per_type
        }

        for tel_id in self.hillas_dict:
            try:
                agree = self.mc_offset == self.get_offangle(tel_id,
                                                            direction="mc")
            except AttributeError:
                self.mc_offset = self.get_offangle(tel_id, direction="mc")
                continue
            if not agree:
                raise ValueError(
                    "The pointing of the telescopes seems to be different.")

        self.impact = self.get_impact(self.hillas_dict)  # impact parameter

    def get_reconstructed_parameters(self):
        '''
        Return the parameters for writing to table.

        Returns
        -------
        prepared parameters :
            impact
            max_signal
            tot_signal
            n_tels_per_type
            hillas_dict
            mc_offangle
            reco_result
        '''

        # check if event was prepared before
        try:
            assert self.impact
        except AssertionError:
            self.prepare()

        return (self.impact, self.max_signal, self.tot_signal,
                self.n_tels_per_type, self.hillas_dict, self.mc_offset,
                self.reco_result)