Ejemplo n.º 1
0
def main():
    args = _parse_args()

    if args.tsv:
        data, discrete_columns = read_tsv(args.data, args.metadata)
    else:
        data, discrete_columns = read_csv(
            args.data, args.metadata, args.header, args.discrete
        )

    if args.load:
        model = CTGANSynthesizer.load(args.load)
    else:
        model = CTGANSynthesizer()
    model.fit(data, discrete_columns, args.epochs)

    if args.save is not None:
        model.save(args.save)

    num_samples = args.num_samples or len(data)

    if args.sample_condition_column is not None:
        assert args.sample_condition_column_value is not None

    sampled = model.sample(
        num_samples, args.sample_condition_column, args.sample_condition_column_value
    )

    if args.tsv:
        write_tsv(sampled, args.metadata, args.output)
    else:
        sampled.to_csv(args.output, index=False)
Ejemplo n.º 2
0
def test_synthesizer_sample():
    data = pd.DataFrame({"discrete": np.random.choice(["a", "b", "c"], 100)})
    discrete_columns = ["discrete"]

    ctgan = CTGANSynthesizer()
    ctgan.fit(data, discrete_columns, epochs=1)

    samples = ctgan.sample(1000, "discrete", "a")
    assert isinstance(samples, pd.DataFrame)
Ejemplo n.º 3
0
def test_synthesizer_sample():
    data = pd.DataFrame({'discrete': np.random.choice(['a', 'b', 'c'], 100)})
    discrete_columns = ['discrete']

    ctgan = CTGANSynthesizer()
    ctgan.fit(data, discrete_columns, epochs=1)

    samples = ctgan.sample(1000, 'discrete', 'a')
    assert isinstance(samples, pd.DataFrame)
Ejemplo n.º 4
0
def test_ctgan_numpy():
    data = pd.DataFrame({
        "continuous": np.random.random(100),
        "discrete": np.random.choice(["a", "b", "c"], 100),
    })
    discrete_columns = [1]

    ctgan = CTGANSynthesizer()
    ctgan.fit(data.values, discrete_columns, epochs=1)

    sampled = ctgan.sample(100)

    assert sampled.shape == (100, 2)
    assert isinstance(sampled, np.ndarray)
    assert set(np.unique(sampled[:, 1])) == {"a", "b", "c"}
Ejemplo n.º 5
0
def test_ctgan_dataframe():
    data = pd.DataFrame({
        "continuous": np.random.random(100),
        "discrete": np.random.choice(["a", "b", "c"], 100),
    })
    discrete_columns = ["discrete"]

    ctgan = CTGANSynthesizer()
    ctgan.fit(data, discrete_columns, epochs=1)

    sampled = ctgan.sample(100)

    assert sampled.shape == (100, 2)
    assert isinstance(sampled, pd.DataFrame)
    assert set(sampled.columns) == {"continuous", "discrete"}
    assert set(sampled["discrete"].unique()) == {"a", "b", "c"}
Ejemplo n.º 6
0
def test_ctgan_dataframe():
    data = pd.DataFrame({
        'continuous': np.random.random(100),
        'discrete': np.random.choice(['a', 'b', 'c'], 100)
    })
    discrete_columns = ['discrete']

    ctgan = CTGANSynthesizer()
    ctgan.fit(data, discrete_columns, epochs=1)

    sampled = ctgan.sample(100)

    assert sampled.shape == (100, 2)
    assert isinstance(sampled, pd.DataFrame)
    assert set(sampled.columns) == {'continuous', 'discrete'}
    assert set(sampled['discrete'].unique()) == {'a', 'b', 'c'}
Ejemplo n.º 7
0
def main():
    args = _parse_args()

    if args.tsv:
        data, discrete_columns = read_tsv(args.data, args.metadata)
    else:
        data, discrete_columns = read_csv(args.data, args.metadata, args.header, args.discrete)

    model = CTGANSynthesizer()
    model.fit(data, discrete_columns, args.epochs)

    num_samples = args.num_samples or len(data)
    sampled = model.sample(num_samples)

    if args.tsv:
        write_tsv(sampled, args.metadata, args.output)
    else:
        sampled.to_csv(args.output, index=False)
Ejemplo n.º 8
0
def test_categorical_nan():
    data = pd.DataFrame({
        "continuous": np.random.random(30),
        # This must be a list (not a np.array) or NaN will be cast to a string.
        "discrete": [np.nan, "b", "c"] * 10,
    })
    discrete_columns = ["discrete"]

    ctgan = CTGANSynthesizer()
    ctgan.fit(data, discrete_columns, epochs=1)

    sampled = ctgan.sample(100)

    assert sampled.shape == (100, 2)
    assert isinstance(sampled, pd.DataFrame)
    assert set(sampled.columns) == {"continuous", "discrete"}

    # since np.nan != np.nan, we need to be careful here
    values = set(sampled["discrete"].unique())
    assert len(values) == 3
    assert any(pd.isnull(x) for x in values)
    assert {"b", "c"}.issubset(values)
Ejemplo n.º 9
0
def test_log_frequency():

    data = pd.DataFrame({
        "continuous": np.random.random(1000),
        "discrete": np.repeat(["a", "b", "c"], [950, 25, 25]),
    })

    discrete_columns = ["discrete"]

    ctgan = CTGANSynthesizer()
    ctgan.fit(data, discrete_columns, epochs=100)

    sampled = ctgan.sample(10000)
    counts = sampled["discrete"].value_counts()
    assert counts["a"] < 6500

    ctgan = CTGANSynthesizer(log_frequency=False)
    ctgan.fit(data, discrete_columns, epochs=100)

    sampled = ctgan.sample(10000)
    counts = sampled["discrete"].value_counts()
    assert counts["a"] > 9000
Ejemplo n.º 10
0
def test_log_frequency():

    data = pd.DataFrame({
        'continuous': np.random.random(1000),
        'discrete': np.repeat(['a', 'b', 'c'], [950, 25, 25])
    })

    discrete_columns = ['discrete']

    ctgan = CTGANSynthesizer()
    ctgan.fit(data, discrete_columns, epochs=100)

    sampled = ctgan.sample(10000)
    counts = sampled['discrete'].value_counts()
    assert counts['a'] < 6500

    ctgan = CTGANSynthesizer()
    ctgan.fit(data, discrete_columns, epochs=100, log_frequency=False)

    sampled = ctgan.sample(10000)
    counts = sampled['discrete'].value_counts()
    assert counts['a'] > 9000
Ejemplo n.º 11
0
import numpy as np
import pandas as pd
import os
import sys
import tqdm
import pickle
import pathlib
from pathlib import Path


def get_domain_dims(DIR='us_import1'):
    with open('./generated_data_v1/{}/domain_dims.pkl'.format(DIR),
              'rb') as fh:
        domain_dims = pickle.load(fh)
    return domain_dims


def convert_np_to_pd(data_np, domain_dims):
    columns = list(domain_dims.keys())
    df = pd.DataFrame(data=data_np, columns=columns)
    return df, columns


real_data = np.load('./generated_data_v1/us_import1/pos_data.npy')
domain_dims = get_domain_dims()
data_df, columns = convert_np_to_pd(real_data, domain_dims)

ctgan_obj = CTGANSynthesizer()
ctgan_obj.fit(data, columns)
ctgan_obj.save('ctgan.pkl')