Ejemplo n.º 1
0
def cholesky(a):
    '''Cholesky decomposition.

    Decompose a given two-dimensional square matrix into ``L * L.T``,
    where ``L`` is a lower-triangular matrix and ``.T`` is a conjugate
    transpose operator. Note that in the current implementation ``a`` must be
    a real matrix, and only float32 and float64 are supported.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(N, N)``

    .. seealso:: :func:`numpy.linalg.cholesky`
    '''
    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    _assert_cupy_array(a)
    _assert_rank2(a)
    _assert_nd_squareness(a)

    # Cast to float32 or float64
    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    x = a.astype(dtype, copy=True)
    n = len(a)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)
    if dtype == 'f':
        buffersize = cusolver.spotrf_bufferSize(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float32)
        cusolver.spotrf(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n,
            workspace.data.ptr, buffersize, dev_info.data.ptr)
    else:  # dtype == 'd'
        buffersize = cusolver.dpotrf_bufferSize(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float64)
        cusolver.dpotrf(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n,
            workspace.data.ptr, buffersize, dev_info.data.ptr)
    status = int(dev_info[0])
    if status > 0:
        raise linalg.LinAlgError(
            'The leading minor of order {} '
            'is not positive definite'.format(status))
    elif status < 0:
        raise linalg.LinAlgError(
            'Parameter error (maybe caused by a bug in cupy.linalg?)')
    _tril(x, k=0)
    return x
Ejemplo n.º 2
0
def _lu_factor(a, overwrite_a=False, check_finite=True):
    a = cupy.asarray(a)
    _util._assert_rank2(a)

    dtype = a.dtype

    if dtype.char == 'f':
        getrf = cusolver.sgetrf
        getrf_bufferSize = cusolver.sgetrf_bufferSize
    elif dtype.char == 'd':
        getrf = cusolver.dgetrf
        getrf_bufferSize = cusolver.dgetrf_bufferSize
    elif dtype.char == 'F':
        getrf = cusolver.cgetrf
        getrf_bufferSize = cusolver.cgetrf_bufferSize
    elif dtype.char == 'D':
        getrf = cusolver.zgetrf
        getrf_bufferSize = cusolver.zgetrf_bufferSize
    else:
        msg = 'Only float32, float64, complex64 and complex128 are supported.'
        raise NotImplementedError(msg)

    a = a.astype(dtype, order='F', copy=(not overwrite_a))

    if check_finite:
        if a.dtype.kind == 'f' and not cupy.isfinite(a).all():
            raise ValueError('array must not contain infs or NaNs')

    cusolver_handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    m, n = a.shape

    ipiv = cupy.empty((min(m, n), ), dtype=numpy.intc)

    buffersize = getrf_bufferSize(cusolver_handle, m, n, a.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)

    # LU factorization
    getrf(cusolver_handle, m, n, a.data.ptr, m, workspace.data.ptr,
          ipiv.data.ptr, dev_info.data.ptr)

    if dev_info[0] < 0:
        raise ValueError('illegal value in %d-th argument of '
                         'internal getrf (lu_factor)' % -dev_info[0])
    elif dev_info[0] > 0:
        warn('Diagonal number %d is exactly zero. Singular matrix.' %
             dev_info[0],
             RuntimeWarning,
             stacklevel=2)

    # cuSolver uses 1-origin while SciPy uses 0-origin
    ipiv -= 1

    return (a, ipiv)
Ejemplo n.º 3
0
def cholesky(a):
    '''Cholesky decomposition.

    Decompose a given two-dimensional square matrix into ``L * L.T``,
    where ``L`` is a lower-triangular matrix and ``.T`` is a conjugate
    transpose operator. Note that in the current implementation ``a`` must be
    a real matrix, and only float32 and float64 are supported.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(N, N)``

    .. seealso:: :func:`numpy.linalg.cholesky`
    '''
    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    _assert_cupy_array(a)
    _assert_rank2(a)
    _assert_nd_squareness(a)

    # Cast to float32 or float64
    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    x = a.astype(dtype, order='C', copy=True)
    n = len(a)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)
    if dtype == 'f':
        buffersize = cusolver.spotrf_bufferSize(handle,
                                                cublas.CUBLAS_FILL_MODE_UPPER,
                                                n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float32)
        cusolver.spotrf(handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr,
                        n, workspace.data.ptr, buffersize, dev_info.data.ptr)
    else:  # dtype == 'd'
        buffersize = cusolver.dpotrf_bufferSize(handle,
                                                cublas.CUBLAS_FILL_MODE_UPPER,
                                                n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float64)
        cusolver.dpotrf(handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr,
                        n, workspace.data.ptr, buffersize, dev_info.data.ptr)
    status = int(dev_info[0])
    if status > 0:
        raise linalg.LinAlgError('The leading minor of order {} '
                                 'is not positive definite'.format(status))
    elif status < 0:
        raise linalg.LinAlgError(
            'Parameter error (maybe caused by a bug in cupy.linalg?)')
    _tril(x, k=0)
    return x
Ejemplo n.º 4
0
Archivo: solve.py Proyecto: wxrui/cupy
def solve(a, b):
    """Solves a linear matrix equation.

    It computes the exact solution of ``x`` in ``ax = b``,
    where ``a`` is a square and full rank matrix.

    Args:
        a (cupy.ndarray): The matrix with dimension ``(..., M, M)``.
        b (cupy.ndarray): The matrix with dimension ``(...,M)`` or
            ``(..., M, K)``.

    Returns:
        cupy.ndarray:
            The matrix with dimension ``(..., M)`` or ``(..., M, K)``.

    .. seealso:: :func:`numpy.linalg.solve`
    """
    # NOTE: Since cusolver in CUDA 8.0 does not support gesv,
    #       we manually solve a linear system with QR decomposition.
    #       For details, please see the following:
    #       https://docs.nvidia.com/cuda/cusolver/index.html#qr_examples
    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    util._assert_cupy_array(a, b)
    util._assert_nd_squareness(a)

    if not ((a.ndim == b.ndim or a.ndim == b.ndim + 1)
            and a.shape[:-1] == b.shape[:a.ndim - 1]):
        raise ValueError(
            'a must have (..., M, M) shape and b must have (..., M) '
            'or (..., M, K)')

    # Cast to float32 or float64
    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ())

    cublas_handle = device.get_cublas_handle()
    cusolver_handle = device.get_cusolver_handle()

    a = a.astype(dtype)
    b = b.astype(dtype)
    if a.ndim == 2:
        return _solve(a, b, cublas_handle, cusolver_handle)

    x = cupy.empty_like(b)
    shape = a.shape[:-2]
    for i in six.moves.range(numpy.prod(shape)):
        index = numpy.unravel_index(i, shape)
        x[index] = _solve(a[index], b[index], cublas_handle, cusolver_handle)
    return x
Ejemplo n.º 5
0
def _potrf_batched(a):
    """Batched Cholesky decomposition.

    Decompose a given array of two-dimensional square matrices into
    ``L * L.T``, where ``L`` is a lower-triangular matrix and ``.T``
    is a conjugate transpose operator.

    Args:
        a (cupy.ndarray): The input array of matrices
            with dimension ``(..., N, N)``

    Returns:
        cupy.ndarray: The lower-triangular matrix.
    """
    if not check_availability('potrfBatched'):
        raise RuntimeError('potrfBatched is not available')

    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.promote_types(a.dtype.char, 'f').char

    if dtype == 'f':
        potrfBatched = cusolver.spotrfBatched
    elif dtype == 'd':
        potrfBatched = cusolver.dpotrfBatched
    elif dtype == 'F':
        potrfBatched = cusolver.cpotrfBatched
    else:  # dtype == 'D':
        potrfBatched = cusolver.zpotrfBatched

    x = a.astype(dtype, order='C', copy=True)
    xp = cupy.core._mat_ptrs(x)
    n = x.shape[-1]
    ldx = x.strides[-2] // x.dtype.itemsize
    handle = device.get_cusolver_handle()
    batch_size = internal.prod(x.shape[:-2])
    dev_info = cupy.empty(batch_size, dtype=numpy.int32)

    potrfBatched(
        handle, cublas.CUBLAS_FILL_MODE_UPPER, n, xp.data.ptr, ldx,
        dev_info.data.ptr, batch_size)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        potrfBatched, dev_info)

    return cupy.tril(x)
Ejemplo n.º 6
0
def _slogdet_one(a):
    util._assert_rank2(a)
    util._assert_nd_squareness(a)
    dtype = a.dtype

    handle = device.get_cusolver_handle()
    m = len(a)
    ipiv = cupy.empty(m, dtype=numpy.int32)
    dev_info = cupy.empty((), dtype=numpy.int32)

    # Need to make a copy because getrf works inplace
    a_copy = a.copy(order='F')

    if dtype == 'f':
        getrf_bufferSize = cusolver.sgetrf_bufferSize
        getrf = cusolver.sgetrf
    else:
        getrf_bufferSize = cusolver.dgetrf_bufferSize
        getrf = cusolver.dgetrf

    buffersize = getrf_bufferSize(handle, m, m, a_copy.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)
    getrf(handle, m, m, a_copy.data.ptr, m, workspace.data.ptr, ipiv.data.ptr,
          dev_info.data.ptr)

    # dev_info < 0 means illegal value (in dimensions, strides, and etc.) that
    # should never happen even if the matrix contains nan or inf.
    # TODO(kataoka): assert dev_info >= 0 if synchronization is allowed for
    # debugging purposes.

    diag = cupy.diag(a_copy)
    # ipiv is 1-origin
    non_zero = (cupy.count_nonzero(ipiv != cupy.arange(1, m + 1)) +
                cupy.count_nonzero(diag < 0))

    # Note: sign == -1 ** (non_zero % 2)
    sign = (non_zero % 2) * -2 + 1
    logdet = cupy.log(abs(diag)).sum()

    singular = dev_info > 0
    return (
        cupy.where(singular, dtype.type(0), sign),
        cupy.where(singular, dtype.type('-inf'), logdet),
    )
Ejemplo n.º 7
0
def _slogdet_one(a):
    util._assert_rank2(a)
    util._assert_nd_squareness(a)
    dtype = a.dtype

    handle = device.get_cusolver_handle()
    m = len(a)
    ipiv = cupy.empty(m, dtype=numpy.int32)
    dev_info = cupy.empty(1, dtype=numpy.int32)

    # Need to make a copy because getrf works inplace
    a_copy = a.copy(order='F')

    if dtype == 'f':
        getrf_bufferSize = cusolver.sgetrf_bufferSize
        getrf = cusolver.sgetrf
    else:
        getrf_bufferSize = cusolver.dgetrf_bufferSize
        getrf = cusolver.dgetrf

    buffersize = getrf_bufferSize(handle, m, m, a_copy.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)
    getrf(handle, m, m, a_copy.data.ptr, m, workspace.data.ptr,
          ipiv.data.ptr, dev_info.data.ptr)

    try:
        cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed(
            getrf, dev_info)

        diag = cupy.diag(a_copy)
        # ipiv is 1-origin
        non_zero = (cupy.count_nonzero(ipiv != cupy.arange(1, m + 1)) +
                    cupy.count_nonzero(diag < 0))
        # Note: sign == -1 ** (non_zero % 2)
        sign = (non_zero % 2) * -2 + 1
        logdet = cupy.log(abs(diag)).sum()
    except linalg.LinAlgError:
        sign = cupy.array(0.0, dtype=dtype)
        logdet = cupy.array(float('-inf'), dtype)

    return sign, logdet
Ejemplo n.º 8
0
def _slogdet_one(a):
    util._assert_rank2(a)
    util._assert_nd_squareness(a)
    dtype = a.dtype

    handle = device.get_cusolver_handle()
    m = len(a)
    ipiv = cupy.empty(m, 'i')
    info = cupy.empty((), 'i')

    # Need to make a copy because getrf works inplace
    a_copy = a.copy(order='F')

    if dtype == 'f':
        getrf_bufferSize = cusolver.sgetrf_bufferSize
        getrf = cusolver.sgetrf
    else:
        getrf_bufferSize = cusolver.dgetrf_bufferSize
        getrf = cusolver.dgetrf

    buffersize = getrf_bufferSize(handle, m, m, a_copy.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)
    getrf(handle, m, m, a_copy.data.ptr, m, workspace.data.ptr,
          ipiv.data.ptr, info.data.ptr)

    if info[()] == 0:
        diag = cupy.diag(a_copy)
        # ipiv is 1-origin
        non_zero = (cupy.count_nonzero(ipiv != cupy.arange(1, m + 1)) +
                    cupy.count_nonzero(diag < 0))
        # Note: sign == -1 ** (non_zero % 2)
        sign = (non_zero % 2) * -2 + 1
        logdet = cupy.log(abs(diag)).sum()
    else:
        sign = cupy.array(0.0, dtype=dtype)
        logdet = cupy.array(float('-inf'), dtype)

    return sign, logdet
Ejemplo n.º 9
0
def _solve(a, b):
    a = cupy.asfortranarray(a)
    b = cupy.asfortranarray(b)
    dtype = a.dtype
    m, k = (b.size, 1) if b.ndim == 1 else b.shape
    cusolver_handle = device.get_cusolver_handle()
    cublas_handle = device.get_cublas_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if dtype == 'f':
        geqrf = cusolver.sgeqrf
        geqrf_bufferSize = cusolver.sgeqrf_bufferSize
        ormqr = cusolver.sormqr
        trsm = cublas.strsm
    else:  # dtype == 'd'
        geqrf = cusolver.dgeqrf
        geqrf_bufferSize = cusolver.dgeqrf_bufferSize
        ormqr = cusolver.dormqr
        trsm = cublas.dtrsm

    # 1. QR decomposition (A = Q * R)
    buffersize = geqrf_bufferSize(cusolver_handle, m, m, a.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)
    tau = cupy.empty(m, dtype=dtype)
    geqrf(cusolver_handle, m, m, a.data.ptr, m, tau.data.ptr,
          workspace.data.ptr, buffersize, dev_info.data.ptr)
    _check_status(dev_info)
    # 2. ormqr (Q^T * B)
    ormqr(cusolver_handle, cublas.CUBLAS_SIDE_LEFT, cublas.CUBLAS_OP_T, m, k,
          m, a.data.ptr, m, tau.data.ptr, b.data.ptr, m, workspace.data.ptr,
          buffersize, dev_info.data.ptr)
    _check_status(dev_info)
    # 3. trsm (X = R^{-1} * (Q^T * B))
    trsm(cublas_handle, cublas.CUBLAS_SIDE_LEFT, cublas.CUBLAS_FILL_MODE_UPPER,
         cublas.CUBLAS_OP_N, cublas.CUBLAS_DIAG_NON_UNIT, m, k, 1, a.data.ptr,
         m, b.data.ptr, m)
    return b
Ejemplo n.º 10
0
def invh(a):
    """Compute the inverse of a Hermitian matrix.

    This function computes a inverse of a real symmetric or complex hermitian
    positive-definite matrix using Cholesky factorization. If matrix ``a`` is
    not positive definite, Cholesky factorization fails and it raises an error.

    Args:
        a (cupy.ndarray): Real symmetric or complex hermitian maxtix.

    Returns:
        cupy.ndarray: The inverse of matrix ``a``.
    """

    # to prevent `a` from being overwritten
    a = a.copy()

    util._assert_cupy_array(a)
    util._assert_rank2(a)
    util._assert_nd_squareness(a)

    # support float32, float64, complex64, and complex128
    if a.dtype.char in 'fdFD':
        dtype = a.dtype.char
    else:
        dtype = numpy.promote_types(a.dtype.char, 'f').char

    cusolver_handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if dtype == 'f':
        potrf = cusolver.spotrf
        potrf_bufferSize = cusolver.spotrf_bufferSize
        potrs = cusolver.spotrs
    elif dtype == 'd':
        potrf = cusolver.dpotrf
        potrf_bufferSize = cusolver.dpotrf_bufferSize
        potrs = cusolver.dpotrs
    elif dtype == 'F':
        potrf = cusolver.cpotrf
        potrf_bufferSize = cusolver.cpotrf_bufferSize
        potrs = cusolver.cpotrs
    elif dtype == 'D':
        potrf = cusolver.zpotrf
        potrf_bufferSize = cusolver.zpotrf_bufferSize
        potrs = cusolver.zpotrs
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)

    m = a.shape[0]
    uplo = cublas.CUBLAS_FILL_MODE_LOWER

    worksize = potrf_bufferSize(cusolver_handle, uplo, m, a.data.ptr, m)
    workspace = cupy.empty(worksize, dtype=dtype)

    # Cholesky factorization
    potrf(cusolver_handle, uplo, m, a.data.ptr, m, workspace.data.ptr,
          worksize, dev_info.data.ptr)

    info = dev_info[0]
    if info != 0:
        if info < 0:
            msg = '\tThe {}-th parameter is wrong'.format(-info)
        else:
            msg = ('\tThe leading minor of order {} is not positive definite'
                   .format(info))
        raise RuntimeError('matrix inversion failed at potrf.\n' + msg)

    b = cupy.eye(m, dtype=dtype)

    # Solve: A * X = B
    potrs(cusolver_handle, uplo, m, m, a.data.ptr, m, b.data.ptr, m,
          dev_info.data.ptr)

    info = dev_info[0]
    if info > 0:
        assert False, ('Unexpected output returned by potrs (actual: {})'
                       .format(info))
    elif info < 0:
        raise RuntimeError('matrix inversion failed at potrs.\n'
                           '\tThe {}-th parameter is wrong'.format(-info))

    return b
Ejemplo n.º 11
0
def lu_factor(a, overwrite_a=False, check_finite=True):
    """LU decomposition.

    Decompose a given two-dimensional square matrix into ``P * L * U``,
    where ``P`` is a permutation matrix,  ``L`` lower-triangular with
    unit diagonal elements, and ``U`` upper-triangular matrix.
    Note that in the current implementation ``a`` must be
    a real matrix, and only :class:`numpy.float32` and :class:`numpy.float64`
    are supported.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(M, N)``
        overwrite_a (bool): Allow overwriting data in ``a`` (may enhance
            performance)
        check_finite (bool): Whether to check that the input matrices contain
            only finite numbers. Disabling may give a performance gain, but may
            result in problems (crashes, non-termination) if the inputs do
            contain infinities or NaNs.

    Returns:
        tuple:
            ``(lu, piv)`` where ``lu`` is a :class:`cupy.ndarray`
            storing ``U`` in its upper triangle, and ``L`` without
            unit diagonal elements in its lower triangle, and ``piv`` is
            a :class:`cupy.ndarray` storing pivot indices representing
            permutation matrix ``P``. For ``0 <= i < min(M,N)``, row
            ``i`` of the matrix was interchanged with row ``piv[i]``

    .. seealso:: :func:`scipy.linalg.lu_factor`

    .. note::

        Current implementation returns result different from SciPy when the
        matrix singular. SciPy returns an array containing ``0.`` while the
        current implementation returns an array containing ``nan``.

        >>> import numpy as np
        >>> import scipy.linalg
        >>> scipy.linalg.lu_factor(np.array([[0, 1], [0, 0]], \
dtype=np.float32))
        (array([[0., 1.],
               [0., 0.]], dtype=float32), array([0, 1], dtype=int32))

        >>> import cupy as cp
        >>> import cupyx.scipy.linalg
        >>> cupyx.scipy.linalg.lu_factor(cp.array([[0, 1], [0, 0]], \
dtype=cp.float32))
        (array([[ 0.,  1.],
               [nan, nan]], dtype=float32), array([0, 1], dtype=int32))
    """

    a = cupy.asarray(a)
    util._assert_rank2(a)

    dtype = a.dtype

    if dtype.char == 'f':
        getrf = cusolver.sgetrf
        getrf_bufferSize = cusolver.sgetrf_bufferSize
    elif dtype.char == 'd':
        getrf = cusolver.dgetrf
        getrf_bufferSize = cusolver.dgetrf_bufferSize
    else:
        raise NotImplementedError('Only float32 and float64 are supported.')

    a = a.astype(dtype, order='F', copy=(not overwrite_a))

    if check_finite:
        if a.dtype.kind == 'f' and not cupy.isfinite(a).all():
            raise ValueError('array must not contain infs or NaNs')

    cusolver_handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    m, n = a.shape

    ipiv = cupy.empty((min(m, n), ), dtype=numpy.intc)

    buffersize = getrf_bufferSize(cusolver_handle, m, n, a.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)

    # LU factorization
    getrf(cusolver_handle, m, n, a.data.ptr, m, workspace.data.ptr,
          ipiv.data.ptr, dev_info.data.ptr)

    if dev_info[0] < 0:
        raise ValueError('illegal value in %d-th argument of '
                         'internal getrf (lu_factor)' % -dev_info[0])
    elif dev_info[0] > 0:
        warn('Diagonal number %d is exactly zero. Singular matrix.' %
             dev_info[0],
             RuntimeWarning,
             stacklevel=2)

    # cuSolver uses 1-origin while SciPy uses 0-origin
    ipiv -= 1

    return (a, ipiv)
Ejemplo n.º 12
0
def qr(a, mode='reduced'):
    '''QR decomposition.

    Decompose a given two-dimensional matrix into ``Q * R``, where ``Q``
    is an orthonormal and ``R`` is an upper-triangular matrix.

    Args:
        a (cupy.ndarray): The input matrix.
        mode (str): The mode of decomposition. Currently 'reduced',
            'complete', 'r', and 'raw' modes are supported. The default mode
            is 'reduced', and decompose a matrix ``A = (M, N)`` into ``Q``,
            ``R`` with dimensions ``(M, K)``, ``(K, N)``, where
            ``K = min(M, N)``.

    .. seealso:: :func:`numpy.linalg.qr`
    '''
    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    _assert_cupy_array(a)
    _assert_rank2(a)

    if mode not in ('reduced', 'complete', 'r', 'raw'):
        if mode in ('f', 'full', 'e', 'economic'):
            msg = 'The deprecated mode \'{}\' is not supported'.format(mode)
            raise ValueError(msg)
        else:
            raise ValueError('Unrecognized mode \'{}\''.format(mode))

    # Cast to float32 or float64
    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    m, n = a.shape
    x = a.transpose().astype(dtype, copy=True)
    mn = min(m, n)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)
    # compute working space of geqrf and ormqr, and solve R
    if dtype == 'f':
        buffersize = cusolver.sgeqrf_bufferSize(handle, m, n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float32)
        tau = cupy.empty(mn, dtype=numpy.float32)
        cusolver.sgeqrf(
            handle, m, n, x.data.ptr, m,
            tau.data.ptr, workspace.data.ptr, buffersize, dev_info.data.ptr)
    else:  # dtype == 'd'
        buffersize = cusolver.dgeqrf_bufferSize(handle, n, m, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float64)
        tau = cupy.empty(mn, dtype=numpy.float64)
        cusolver.dgeqrf(
            handle, m, n, x.data.ptr, m,
            tau.data.ptr, workspace.data.ptr, buffersize, dev_info.data.ptr)
    status = int(dev_info[0])
    if status < 0:
        raise linalg.LinAlgError(
            'Parameter error (maybe caused by a bug in cupy.linalg?)')

    if mode == 'r':
        r = x[:, :mn].transpose()
        return _triu(r)

    if mode == 'raw':
        if a.dtype.char == 'f':
            # The original numpy.linalg.qr returns float64 in raw mode,
            # whereas the cusolver returns float32. We agree that the
            # following code would be inappropriate, however, in this time
            # we explicitly convert them to float64 for compatibility.
            return x.astype(numpy.float64), tau.astype(numpy.float64)
        return x, tau

    if mode == 'complete' and m > n:
        mc = m
        q = cupy.empty((m, m), dtype)
    else:
        mc = mn
        q = cupy.empty((n, m), dtype)
    q[:n] = x

    # solve Q
    if dtype == 'f':
        buffersize = cusolver.sorgqr_bufferSize(
            handle, m, mc, mn, q.data.ptr, m, tau.data.ptr)
        workspace = cupy.empty(buffersize, dtype=numpy.float32)
        cusolver.sorgqr(
            handle, m, mc, mn, q.data.ptr, m, tau.data.ptr,
            workspace.data.ptr, buffersize, dev_info.data.ptr)
    else:
        buffersize = cusolver.dorgqr_bufferSize(
            handle, m, mc, mn, q.data.ptr, m, tau.data.ptr)
        workspace = cupy.empty(buffersize, dtype=numpy.float64)
        cusolver.dorgqr(
            handle, m, mc, mn, q.data.ptr, m, tau.data.ptr,
            workspace.data.ptr, buffersize, dev_info.data.ptr)

    q = q[:mc].transpose()
    r = x[:, :mc].transpose()
    return q, _triu(r)
Ejemplo n.º 13
0
def qr(a, mode='reduced'):
    '''QR decomposition.

    Decompose a given two-dimensional matrix into ``Q * R``, where ``Q``
    is an orthonormal and ``R`` is an upper-triangular matrix.

    Args:
        a (cupy.ndarray): The input matrix.
        mode (str): The mode of decomposition. Currently 'reduced',
            'complete', 'r', and 'raw' modes are supported. The default mode
            is 'reduced', and decompose a matrix ``A = (M, N)`` into ``Q``,
            ``R`` with dimensions ``(M, K)``, ``(K, N)``, where
            ``K = min(M, N)``.

    .. seealso:: :func:`numpy.linalg.qr`
    '''
    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    _assert_cupy_array(a)
    _assert_rank2(a)

    if mode not in ('reduced', 'complete', 'r', 'raw'):
        if mode in ('f', 'full', 'e', 'economic'):
            msg = 'The deprecated mode \'{}\' is not supported'.format(mode)
            raise ValueError(msg)
        else:
            raise ValueError('Unrecognized mode \'{}\''.format(mode))

    # Cast to float32 or float64
    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    m, n = a.shape
    x = a.transpose().astype(dtype, copy=True)
    mn = min(m, n)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)
    # compute working space of geqrf and ormqr, and solve R
    if dtype == 'f':
        buffersize = cusolver.sgeqrf_bufferSize(handle, m, n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float32)
        tau = cupy.empty(mn, dtype=numpy.float32)
        cusolver.sgeqrf(
            handle, m, n, x.data.ptr, m,
            tau.data.ptr, workspace.data.ptr, buffersize, dev_info.data.ptr)
    else:  # dtype == 'd'
        buffersize = cusolver.dgeqrf_bufferSize(handle, n, m, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float64)
        tau = cupy.empty(mn, dtype=numpy.float64)
        cusolver.dgeqrf(
            handle, m, n, x.data.ptr, m,
            tau.data.ptr, workspace.data.ptr, buffersize, dev_info.data.ptr)
    status = int(dev_info[0])
    if status < 0:
        raise linalg.LinAlgError(
            'Parameter error (maybe caused by a bug in cupy.linalg?)')

    if mode == 'r':
        r = x[:, :mn].transpose()
        return _triu(r)

    if mode == 'raw':
        if a.dtype.char == 'f':
            # The original numpy.linalg.qr returns float64 in raw mode,
            # whereas the cusolver returns float32. We agree that the
            # following code would be inappropriate, however, in this time
            # we explicitly convert them to float64 for compatibility.
            return x.astype(numpy.float64), tau.astype(numpy.float64)
        return x, tau

    if mode == 'complete' and m > n:
        mc = m
        q = cupy.empty((m, m), dtype)
    else:
        mc = mn
        q = cupy.empty((n, m), dtype)
    q[:n] = x

    # solve Q
    if dtype == 'f':
        buffersize = cusolver.sorgqr_bufferSize(
            handle, m, mc, mn, q.data.ptr, m, tau.data.ptr)
        workspace = cupy.empty(buffersize, dtype=numpy.float32)
        cusolver.sorgqr(
            handle, m, mc, mn, q.data.ptr, m, tau.data.ptr,
            workspace.data.ptr, buffersize, dev_info.data.ptr)
    else:
        buffersize = cusolver.dorgqr_bufferSize(
            handle, m, mc, mn, q.data.ptr, m, tau.data.ptr)
        workspace = cupy.empty(buffersize, dtype=numpy.float64)
        cusolver.dorgqr(
            handle, m, mc, mn, q.data.ptr, m, tau.data.ptr,
            workspace.data.ptr, buffersize, dev_info.data.ptr)

    q = q[:mc].transpose()
    r = x[:, :mc].transpose()
    return q, _triu(r)
Ejemplo n.º 14
0
def gesv(a, b):
    """Solve a linear matrix equation using cusolverDn<t>getr[fs]().

    Computes the solution to a system of linear equation ``ax = b``.

    Args:
        a (cupy.ndarray): The matrix with dimension ``(M, M)``.
        b (cupy.ndarray): The matrix with dimension ``(M)`` or ``(M, K)``.

    Returns:
        cupy.ndarray:
            The matrix with dimension ``(M)`` or ``(M, K)``.

    Note: ``a`` and ``b`` will be overwritten.
    """
    if a.ndim != 2:
        raise ValueError('a.ndim must be 2 (actual: {})'.format(a.ndim))
    if b.ndim not in (1, 2):
        raise ValueError('b.ndim must be 1 or 2 (actual: {})'.format(b.ndim))
    if a.shape[0] != a.shape[1]:
        raise ValueError('a must be a square matrix.')
    if a.shape[0] != b.shape[0]:
        raise ValueError('shape mismatch (a: {}, b: {}).'.format(
            a.shape, b.shape))
    if a.dtype != b.dtype:
        raise TypeError('dtype mismatch (a: {}, b: {})'.format(
            a.dtype, b.dtype))
    dtype = a.dtype
    if dtype == 'f':
        t = 's'
    elif dtype == 'd':
        t = 'd'
    elif dtype == 'F':
        t = 'c'
    elif dtype == 'D':
        t = 'z'
    else:
        raise TypeError('unsupported dtype (actual:{})'.format(a.dtype))
    helper = getattr(_cusolver, t + 'getrf_bufferSize')
    getrf = getattr(_cusolver, t + 'getrf')
    getrs = getattr(_cusolver, t + 'getrs')

    n = b.shape[0]
    nrhs = b.shape[1] if b.ndim == 2 else 1
    if a._f_contiguous:
        trans = _cublas.CUBLAS_OP_N
    elif a._c_contiguous:
        trans = _cublas.CUBLAS_OP_T
    else:
        raise ValueError('a must be F-contiguous or C-contiguous.')
    if not b._f_contiguous:
        raise ValueError('b must be F-contiguous.')

    handle = _device.get_cusolver_handle()
    dipiv = _cupy.empty(n, dtype=_numpy.int32)
    dinfo = _cupy.empty(1, dtype=_numpy.int32)
    lwork = helper(handle, n, n, a.data.ptr, n)
    dwork = _cupy.empty(lwork, dtype=a.dtype)
    # LU factrization (A = L * U)
    getrf(handle, n, n, a.data.ptr, n, dwork.data.ptr, dipiv.data.ptr,
          dinfo.data.ptr)
    _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        getrf, dinfo)
    # Solves Ax = b
    getrs(handle, trans, n, nrhs, a.data.ptr, n, dipiv.data.ptr, b.data.ptr, n,
          dinfo.data.ptr)
    _cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        getrs, dinfo)
Ejemplo n.º 15
0
Archivo: solve.py Proyecto: wxrui/cupy
def inv(a):
    """Computes the inverse of a matrix.

    This function computes matrix ``a_inv`` from n-dimensional regular matrix
    ``a`` such that ``dot(a, a_inv) == eye(n)``.

    Args:
        a (cupy.ndarray): The regular matrix

    Returns:
        cupy.ndarray: The inverse of a matrix.

    .. seealso:: :func:`numpy.linalg.inv`
    """
    if a.ndim >= 3:
        return _batched_inv(a)

    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    # to prevent `a` to be overwritten
    a = a.copy()

    util._assert_cupy_array(a)
    util._assert_rank2(a)
    util._assert_nd_squareness(a)

    # support float32, float64, complex64, and complex128
    if a.dtype.char in 'fdFD':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    cusolver_handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    ipiv = cupy.empty((a.shape[0], 1), dtype=numpy.intc)

    if dtype == 'f':
        getrf = cusolver.sgetrf
        getrf_bufferSize = cusolver.sgetrf_bufferSize
        getrs = cusolver.sgetrs
    elif dtype == 'd':
        getrf = cusolver.dgetrf
        getrf_bufferSize = cusolver.dgetrf_bufferSize
        getrs = cusolver.dgetrs
    elif dtype == 'F':
        getrf = cusolver.cgetrf
        getrf_bufferSize = cusolver.cgetrf_bufferSize
        getrs = cusolver.cgetrs
    elif dtype == 'D':
        getrf = cusolver.zgetrf
        getrf_bufferSize = cusolver.zgetrf_bufferSize
        getrs = cusolver.zgetrs
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)

    m = a.shape[0]

    buffersize = getrf_bufferSize(cusolver_handle, m, m, a.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)

    # LU factorization
    getrf(cusolver_handle, m, m, a.data.ptr, m, workspace.data.ptr,
          ipiv.data.ptr, dev_info.data.ptr)

    b = cupy.eye(m, dtype=dtype)

    # solve for the inverse
    getrs(cusolver_handle, 0, m, m, a.data.ptr, m, ipiv.data.ptr, b.data.ptr,
          m, dev_info.data.ptr)

    return b
Ejemplo n.º 16
0
def gesv(a, b):
    """Solve a linear matrix equation using cusolverDn<t1><t2>gesv().
    Computes the solution to a system of linear equation ``ax = b``.
    Args:
        a (cupy.ndarray): The matrix with dimension ``(M, M)``.
        b (cupy.ndarray): The matrix with dimension ``(M)`` or ``(M, K)``.
    Returns:
        cupy.ndarray:
            The matrix with dimension ``(M)`` or ``(M, K)``.
    """
    if not check_availability('gesv'):
        raise RuntimeError('gesv is not available.')

    if a.ndim != 2:
        raise ValueError('a.ndim must be 2 (actual:{})'.format(a.ndim))
    if b.ndim not in (1, 2):
        raise ValueError('b.ndim must be 1 or 2 (actual:{})'.format(b.ndim))
    if a.shape[0] != a.shape[1]:
        raise ValueError('a must be a square matrix.')
    if a.shape[0] != b.shape[0]:
        raise ValueError('shape mismatch (a:{}, b:{}).'.
                         format(a.shape, b.shape))
    if a.dtype != b.dtype:
        raise ValueError('dtype mismatch (a:{}, b:{}).'.
                         format(a.dtype, b.dtype))

    if b.ndim == 2:
        n, nrhs = b.shape
    else:
        n, nrhs = b.shape[0], 1

    compute_type = _linalg.get_compute_type(a.dtype)
    if a.dtype.char in 'fd':
        if a.dtype.char == 'f':
            t1 = t2 = 's'
        else:
            t1 = t2 = 'd'
        if compute_type == _linalg.COMPUTE_TYPE_FP16:
            t2 = 'h'
        elif compute_type == _linalg.COMPUTE_TYPE_TF32:
            t2 = 'x'
        elif compute_type == _linalg.COMPUTE_TYPE_FP32:
            t2 = 's'
    elif a.dtype.char in 'FD':
        if a.dtype.char == 'F':
            t1 = t2 = 'c'
        else:
            t1 = t2 = 'z'
        if compute_type == _linalg.COMPUTE_TYPE_FP16:
            t2 = 'k'
        elif compute_type == _linalg.COMPUTE_TYPE_TF32:
            t2 = 'y'
        elif compute_type == _linalg.COMPUTE_TYPE_FP32:
            t2 = 'c'
    else:
        raise ValueError('unsupported dtype (actual:{})'.format(a.dtype))
    solver_name = t1 + t2 + 'gesv'
    solver = getattr(_cusolver, solver_name)
    helper = getattr(_cusolver, solver_name + '_bufferSize')

    a = a.copy(order='F')
    b = b.copy(order='F')
    x = _cupy.empty_like(b)
    dipiv = _cupy.empty(n, dtype=_numpy.int32)
    dinfo = _cupy.empty(1, dtype=_numpy.int32)
    handle = _device.get_cusolver_handle()
    lwork = helper(handle, n, nrhs, a.data.ptr, n, dipiv.data.ptr,
                   b.data.ptr, n, x.data.ptr, n, 0)
    dwork = _cupy.empty(lwork, dtype=_numpy.int8)
    niters = solver(handle, n, nrhs, a.data.ptr, n, dipiv.data.ptr,
                    b.data.ptr, n, x.data.ptr, n, dwork.data.ptr, lwork,
                    dinfo.data.ptr)
    if niters < 0:
        raise RuntimeError('gesv has failed ({}).'.format(niters))
    return x
Ejemplo n.º 17
0
def solve(a, b):
    '''Solves a linear matrix equation.

    It computes the exact solution of ``x`` in ``ax = b``,
    where ``a`` is a square and full rank matrix.

    Args:
        a (cupy.ndarray): The matrix with dimension ``(M, M)``
        b (cupy.ndarray): The vector with ``M`` elements, or
            the matrix with dimension ``(M, K)``

    Returns:
        cupy.ndarray:
            The vector with ``M`` elements, or the matrix with dimension
            ``(M, K)``.

    .. seealso:: :func:`numpy.linalg.solve`
    '''
    # NOTE: Since cusolver in CUDA 8.0 does not support gesv,
    #       we manually solve a linear system with QR decomposition.
    #       For details, please see the following:
    #       https://docs.nvidia.com/cuda/cusolver/index.html#qr_examples
    if not cuda.cusolver_enabled:
        raise RuntimeError('Current cupy only supports cusolver in CUDA 8.0')

    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    util._assert_cupy_array(a, b)
    util._assert_rank2(a)
    util._assert_nd_squareness(a)
    if 2 < b.ndim:
        raise linalg.LinAlgError('{}-dimensional array given. Array must be '
                                 'one or two-dimensional'.format(b.ndim))
    if len(a) != len(b):
        raise linalg.LinAlgError('The number of rows of array a must be '
                                 'the same as that of array b')

    # Cast to float32 or float64
    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    m, k = (b.size, 1) if b.ndim == 1 else b.shape
    a = a.transpose().astype(dtype, order='C', copy=True)
    b = b.transpose().astype(dtype, order='C', copy=True)
    cusolver_handle = device.get_cusolver_handle()
    cublas_handle = device.get_cublas_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if dtype == 'f':
        geqrf = cusolver.sgeqrf
        geqrf_bufferSize = cusolver.sgeqrf_bufferSize
        ormqr = cusolver.sormqr
        trsm = cublas.strsm
    else:  # dtype == 'd'
        geqrf = cusolver.dgeqrf
        geqrf_bufferSize = cusolver.dgeqrf_bufferSize
        ormqr = cusolver.dormqr
        trsm = cublas.dtrsm

    # 1. QR decomposition (A = Q * R)
    buffersize = geqrf_bufferSize(cusolver_handle, m, m, a.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)
    tau = cupy.empty(m, dtype=dtype)
    geqrf(cusolver_handle, m, m, a.data.ptr, m, tau.data.ptr,
          workspace.data.ptr, buffersize, dev_info.data.ptr)
    _check_status(dev_info)
    # 2. ormqr (Q^T * B)
    ormqr(cusolver_handle, cublas.CUBLAS_SIDE_LEFT, cublas.CUBLAS_OP_T, m, k,
          m, a.data.ptr, m, tau.data.ptr, b.data.ptr, m, workspace.data.ptr,
          buffersize, dev_info.data.ptr)
    _check_status(dev_info)
    # 3. trsm (X = R^{-1} * (Q^T * B))
    trsm(cublas_handle, cublas.CUBLAS_SIDE_LEFT, cublas.CUBLAS_FILL_MODE_UPPER,
         cublas.CUBLAS_OP_N, cublas.CUBLAS_DIAG_NON_UNIT, m, k, 1, a.data.ptr,
         m, b.data.ptr, m)
    return b.transpose()
Ejemplo n.º 18
0
def cholesky(a):
    """Cholesky decomposition.

    Decompose a given two-dimensional square matrix into ``L * L.T``,
    where ``L`` is a lower-triangular matrix and ``.T`` is a conjugate
    transpose operator.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(N, N)``

    Returns:
        cupy.ndarray: The lower-triangular matrix.

    .. seealso:: :func:`numpy.linalg.cholesky`
    """
    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    util._assert_cupy_array(a)
    util._assert_rank2(a)
    util._assert_nd_squareness(a)

    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    x = a.astype(dtype, order='C', copy=True)
    n = len(a)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)
    if dtype == 'f':
        buffersize = cusolver.spotrf_bufferSize(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float32)
        cusolver.spotrf(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n,
            workspace.data.ptr, buffersize, dev_info.data.ptr)
    elif dtype == 'd':
        buffersize = cusolver.dpotrf_bufferSize(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.float64)
        cusolver.dpotrf(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n,
            workspace.data.ptr, buffersize, dev_info.data.ptr)
    elif dtype == 'F':
        buffersize = cusolver.cpotrf_bufferSize(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.complex64)
        cusolver.cpotrf(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n,
            workspace.data.ptr, buffersize, dev_info.data.ptr)
    else:  # dtype == 'D':
        buffersize = cusolver.zpotrf_bufferSize(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n)
        workspace = cupy.empty(buffersize, dtype=numpy.complex128)
        cusolver.zpotrf(
            handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n,
            workspace.data.ptr, buffersize, dev_info.data.ptr)

    status = int(dev_info[0])
    if status > 0:
        raise linalg.LinAlgError(
            'The leading minor of order {} '
            'is not positive definite'.format(status))
    elif status < 0:
        raise linalg.LinAlgError(
            'Parameter error (maybe caused by a bug in cupy.linalg?)')
    util._tril(x, k=0)
    return x
Ejemplo n.º 19
0
def qr(a, mode='reduced'):
    """QR decomposition.

    Decompose a given two-dimensional matrix into ``Q * R``, where ``Q``
    is an orthonormal and ``R`` is an upper-triangular matrix.

    Args:
        a (cupy.ndarray): The input matrix.
        mode (str): The mode of decomposition. Currently 'reduced',
            'complete', 'r', and 'raw' modes are supported. The default mode
            is 'reduced', in which matrix ``A = (M, N)`` is decomposed into
            ``Q``, ``R`` with dimensions ``(M, K)``, ``(K, N)``, where
            ``K = min(M, N)``.

    Returns:
        cupy.ndarray, or tuple of ndarray:
            Although the type of returned object depends on the mode,
            it returns a tuple of ``(Q, R)`` by default.
            For details, please see the document of :func:`numpy.linalg.qr`.

    .. seealso:: :func:`numpy.linalg.qr`
    """
    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    util._assert_cupy_array(a)
    util._assert_rank2(a)

    if mode not in ('reduced', 'complete', 'r', 'raw'):
        if mode in ('f', 'full', 'e', 'economic'):
            msg = 'The deprecated mode \'{}\' is not supported'.format(mode)
            raise ValueError(msg)
        else:
            raise ValueError('Unrecognized mode \'{}\''.format(mode))

    # support float32, float64, complex64, and complex128
    if a.dtype.char in 'fdFD':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    m, n = a.shape
    x = a.transpose().astype(dtype, order='C', copy=True)
    mn = min(m, n)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)
    # compute working space of geqrf and orgqr, and solve R
    if dtype == 'f':
        geqrf_bufferSize = cusolver.sgeqrf_bufferSize
        geqrf = cusolver.sgeqrf
    elif dtype == 'd':
        geqrf_bufferSize = cusolver.dgeqrf_bufferSize
        geqrf = cusolver.dgeqrf
    elif dtype == 'F':
        geqrf_bufferSize = cusolver.cgeqrf_bufferSize
        geqrf = cusolver.cgeqrf
    elif dtype == 'D':
        geqrf_bufferSize = cusolver.zgeqrf_bufferSize
        geqrf = cusolver.zgeqrf
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)
    buffersize = geqrf_bufferSize(handle, m, n, x.data.ptr, n)
    workspace = cupy.empty(buffersize, dtype=dtype)
    tau = cupy.empty(mn, dtype=dtype)
    geqrf(handle, m, n, x.data.ptr, m,
          tau.data.ptr, workspace.data.ptr, buffersize, dev_info.data.ptr)

    status = int(dev_info[0])
    if status < 0:
        raise linalg.LinAlgError(
            'Parameter error (maybe caused by a bug in cupy.linalg?)')

    if mode == 'r':
        r = x[:, :mn].transpose()
        return util._triu(r)

    if mode == 'raw':
        if a.dtype.char == 'f':
            # The original numpy.linalg.qr returns float64 in raw mode,
            # whereas the cusolver returns float32. We agree that the
            # following code would be inappropriate, however, in this time
            # we explicitly convert them to float64 for compatibility.
            return x.astype(numpy.float64), tau.astype(numpy.float64)
        elif a.dtype.char == 'F':
            # The same applies to complex64
            return x.astype(numpy.complex128), tau.astype(numpy.complex128)
        return x, tau

    if mode == 'complete' and m > n:
        mc = m
        q = cupy.empty((m, m), dtype)
    else:
        mc = mn
        q = cupy.empty((n, m), dtype)
    q[:n] = x

    # solve Q
    if dtype == 'f':
        orgqr_bufferSize = cusolver.sorgqr_bufferSize
        orgqr = cusolver.sorgqr
    elif dtype == 'd':
        orgqr_bufferSize = cusolver.dorgqr_bufferSize
        orgqr = cusolver.dorgqr
    elif dtype == 'F':
        orgqr_bufferSize = cusolver.cungqr_bufferSize
        orgqr = cusolver.cungqr
    elif dtype == 'D':
        orgqr_bufferSize = cusolver.zungqr_bufferSize
        orgqr = cusolver.zungqr
    buffersize = orgqr_bufferSize(handle, m, mc, mn, q.data.ptr, m,
                                  tau.data.ptr)
    workspace = cupy.empty(buffersize, dtype=dtype)
    orgqr(handle, m, mc, mn, q.data.ptr, m, tau.data.ptr,
          workspace.data.ptr, buffersize, dev_info.data.ptr)

    q = q[:mc].transpose()
    r = x[:, :mc].transpose()
    return q, util._triu(r)
Ejemplo n.º 20
0
def qr(a, mode='reduced'):
    """QR decomposition.

    Decompose a given two-dimensional matrix into ``Q * R``, where ``Q``
    is an orthonormal and ``R`` is an upper-triangular matrix.

    Args:
        a (cupy.ndarray): The input matrix.
        mode (str): The mode of decomposition. Currently 'reduced',
            'complete', 'r', and 'raw' modes are supported. The default mode
            is 'reduced', in which matrix ``A = (M, N)`` is decomposed into
            ``Q``, ``R`` with dimensions ``(M, K)``, ``(K, N)``, where
            ``K = min(M, N)``.

    Returns:
        cupy.ndarray, or tuple of ndarray:
            Although the type of returned object depends on the mode,
            it returns a tuple of ``(Q, R)`` by default.
            For details, please see the document of :func:`numpy.linalg.qr`.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.qr`
    """
    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    _util._assert_cupy_array(a)
    _util._assert_rank2(a)

    if mode not in ('reduced', 'complete', 'r', 'raw'):
        if mode in ('f', 'full', 'e', 'economic'):
            msg = 'The deprecated mode \'{}\' is not supported'.format(mode)
            raise ValueError(msg)
        else:
            raise ValueError('Unrecognized mode \'{}\''.format(mode))

    # support float32, float64, complex64, and complex128
    if a.dtype.char in 'fdFD':
        dtype = a.dtype.char
    else:
        dtype = numpy.promote_types(a.dtype.char, 'f').char

    m, n = a.shape
    mn = min(m, n)
    if mn == 0:
        if mode == 'reduced':
            return cupy.empty((m, 0), dtype), cupy.empty((0, n), dtype)
        elif mode == 'complete':
            return cupy.identity(m, dtype), cupy.empty((m, n), dtype)
        elif mode == 'r':
            return cupy.empty((0, n), dtype)
        else:  # mode == 'raw'
            # compatibility with numpy.linalg.qr
            dtype = numpy.promote_types(dtype, 'd')
            return cupy.empty((n, m), dtype), cupy.empty((0, ), dtype)

    x = a.transpose().astype(dtype, order='C', copy=True)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if dtype == 'f':
        geqrf_bufferSize = cusolver.sgeqrf_bufferSize
        geqrf = cusolver.sgeqrf
    elif dtype == 'd':
        geqrf_bufferSize = cusolver.dgeqrf_bufferSize
        geqrf = cusolver.dgeqrf
    elif dtype == 'F':
        geqrf_bufferSize = cusolver.cgeqrf_bufferSize
        geqrf = cusolver.cgeqrf
    elif dtype == 'D':
        geqrf_bufferSize = cusolver.zgeqrf_bufferSize
        geqrf = cusolver.zgeqrf
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)

    # compute working space of geqrf and solve R
    buffersize = geqrf_bufferSize(handle, m, n, x.data.ptr, n)
    workspace = cupy.empty(buffersize, dtype=dtype)
    tau = cupy.empty(mn, dtype=dtype)
    geqrf(handle, m, n, x.data.ptr, m, tau.data.ptr, workspace.data.ptr,
          buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        geqrf, dev_info)

    if mode == 'r':
        r = x[:, :mn].transpose()
        return _util._triu(r)

    if mode == 'raw':
        if a.dtype.char == 'f':
            # The original numpy.linalg.qr returns float64 in raw mode,
            # whereas the cusolver returns float32. We agree that the
            # following code would be inappropriate, however, in this time
            # we explicitly convert them to float64 for compatibility.
            return x.astype(numpy.float64), tau.astype(numpy.float64)
        elif a.dtype.char == 'F':
            # The same applies to complex64
            return x.astype(numpy.complex128), tau.astype(numpy.complex128)
        return x, tau

    if mode == 'complete' and m > n:
        mc = m
        q = cupy.empty((m, m), dtype)
    else:
        mc = mn
        q = cupy.empty((n, m), dtype)
    q[:n] = x

    # compute working space of orgqr and solve Q
    if dtype == 'f':
        orgqr_bufferSize = cusolver.sorgqr_bufferSize
        orgqr = cusolver.sorgqr
    elif dtype == 'd':
        orgqr_bufferSize = cusolver.dorgqr_bufferSize
        orgqr = cusolver.dorgqr
    elif dtype == 'F':
        orgqr_bufferSize = cusolver.cungqr_bufferSize
        orgqr = cusolver.cungqr
    elif dtype == 'D':
        orgqr_bufferSize = cusolver.zungqr_bufferSize
        orgqr = cusolver.zungqr

    buffersize = orgqr_bufferSize(handle, m, mc, mn, q.data.ptr, m,
                                  tau.data.ptr)
    workspace = cupy.empty(buffersize, dtype=dtype)
    orgqr(handle, m, mc, mn, q.data.ptr, m, tau.data.ptr, workspace.data.ptr,
          buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        orgqr, dev_info)

    q = q[:mc].transpose()
    r = x[:, :mc].transpose()
    return q, _util._triu(r)
Ejemplo n.º 21
0
def _lu_factor(a_t, dtype):
    """Compute pivoted LU decomposition.

    Decompose a given batch of square matrices. Inputs and outputs are
    transposed.

    Args:
        a_t (cupy.ndarray): The input matrix with dimension ``(..., N, N)``.
            The dimension condition is not checked.
        dtype (numpy.dtype): float32, float64, complex64, or complex128.

    Returns:
        lu_t (cupy.ndarray): ``L`` without its unit diagonal and ``U`` with
            dimension ``(..., N, N)``.
        piv (cupy.ndarray): 1-origin pivot indices with dimension
            ``(..., N)``.
        dev_info (cupy.ndarray): ``getrf`` info with dimension ``(...)``.

    .. seealso:: :func:`scipy.linalg.lu_factor`

    """
    orig_shape = a_t.shape
    n = orig_shape[-2]

    # copy is necessary to present `a` to be overwritten.
    a_t = a_t.astype(dtype, order='C').reshape(-1, n, n)
    batch_size = a_t.shape[0]
    ipiv = cupy.empty((batch_size, n), dtype=numpy.int32)
    dev_info = cupy.empty((batch_size, ), dtype=numpy.int32)

    # Heuristic condition from some performance test.
    # TODO(kataoka): autotune
    use_batched = batch_size * 65536 >= n * n

    if use_batched:
        handle = device.get_cublas_handle()
        lda = n
        step = n * lda * a_t.itemsize
        start = a_t.data.ptr
        stop = start + step * batch_size
        a_array = cupy.arange(start, stop, step, dtype=cupy.uintp)

        if dtype == numpy.float32:
            getrfBatched = cupy.cuda.cublas.sgetrfBatched
        elif dtype == numpy.float64:
            getrfBatched = cupy.cuda.cublas.dgetrfBatched
        elif dtype == numpy.complex64:
            getrfBatched = cupy.cuda.cublas.cgetrfBatched
        elif dtype == numpy.complex128:
            getrfBatched = cupy.cuda.cublas.zgetrfBatched
        else:
            assert False

        getrfBatched(handle, n, a_array.data.ptr, lda, ipiv.data.ptr,
                     dev_info.data.ptr, batch_size)

    else:
        handle = device.get_cusolver_handle()
        if dtype == numpy.float32:
            getrf_bufferSize = cusolver.sgetrf_bufferSize
            getrf = cusolver.sgetrf
        elif dtype == numpy.float64:
            getrf_bufferSize = cusolver.dgetrf_bufferSize
            getrf = cusolver.dgetrf
        elif dtype == numpy.complex64:
            getrf_bufferSize = cusolver.cgetrf_bufferSize
            getrf = cusolver.cgetrf
        elif dtype == numpy.complex128:
            getrf_bufferSize = cusolver.zgetrf_bufferSize
            getrf = cusolver.zgetrf
        else:
            assert False

        for i in range(batch_size):
            a_ptr = a_t[i].data.ptr
            buffersize = getrf_bufferSize(handle, n, n, a_ptr, n)
            workspace = cupy.empty(buffersize, dtype=dtype)
            getrf(handle, n, n, a_ptr, n, workspace.data.ptr, ipiv[i].data.ptr,
                  dev_info[i].data.ptr)

    return (
        a_t.reshape(orig_shape),
        ipiv.reshape(orig_shape[:-1]),
        dev_info.reshape(orig_shape[:-2]),
    )
Ejemplo n.º 22
0
Archivo: solve.py Proyecto: zelo2/cupy
def _batched_invh(a):
    """Compute the inverse of an array of Hermitian matrices.

    This function computes an inverse of a real symmetric or complex hermitian
    positive-definite matrix using Cholesky factorization. If matrix ``a[i]``
    is not positive definite, Cholesky factorization fails and it raises
    an error.

    Args:
        a (cupy.ndarray): Array of real symmetric or complex hermitian
            matrices with dimension (..., N, N).

    Returns:
        cupy.ndarray: The array of inverses of matrices ``a[i]``.
    """
    if not check_availability('potrsBatched'):
        raise RuntimeError('potrsBatched is not available')

    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.promote_types(a.dtype.char, 'f').char

    if dtype == 'f':
        potrfBatched = cusolver.spotrfBatched
        potrsBatched = cusolver.spotrsBatched
    elif dtype == 'd':
        potrfBatched = cusolver.dpotrfBatched
        potrsBatched = cusolver.dpotrsBatched
    elif dtype == 'F':
        potrfBatched = cusolver.cpotrfBatched
        potrsBatched = cusolver.cpotrsBatched
    elif dtype == 'D':
        potrfBatched = cusolver.zpotrfBatched
        potrsBatched = cusolver.zpotrsBatched
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)

    a = a.astype(dtype, order='C', copy=True)
    ap = cupy.core.core._mat_ptrs(a)
    n = a.shape[-1]
    lda = a.strides[-2] // a.dtype.itemsize
    handle = device.get_cusolver_handle()
    uplo = cublas.CUBLAS_FILL_MODE_LOWER
    batch_size = int(numpy.prod(a.shape[:-2]))
    dev_info = cupy.empty(batch_size, dtype=numpy.int32)

    # Cholesky factorization
    potrfBatched(handle, uplo, n, ap.data.ptr, lda, dev_info.data.ptr,
                 batch_size)
    cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed(
        potrfBatched, dev_info)

    identity_matrix = cupy.eye(n, dtype=dtype)
    b = cupy.empty(a.shape, dtype)
    b[...] = identity_matrix
    nrhs = b.shape[-1]
    ldb = b.strides[-2] // a.dtype.itemsize
    bp = cupy.core.core._mat_ptrs(b)
    dev_info = cupy.empty(1, dtype=numpy.int32)

    # NOTE: potrsBatched does not currently support nrhs > 1 (CUDA v10.2)
    # Solve: A[i] * X[i] = B[i]
    potrsBatched(handle, uplo, n, nrhs, ap.data.ptr, lda, bp.data.ptr, ldb,
                 dev_info.data.ptr, batch_size)
    cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed(
        potrfBatched, dev_info)

    return b
Ejemplo n.º 23
0
def qr(a, mode='reduced'):
    """QR decomposition.

    Decompose a given two-dimensional matrix into ``Q * R``, where ``Q``
    is an orthonormal and ``R`` is an upper-triangular matrix.

    Args:
        a (cupy.ndarray): The input matrix.
        mode (str): The mode of decomposition. Currently 'reduced',
            'complete', 'r', and 'raw' modes are supported. The default mode
            is 'reduced', in which matrix ``A = (..., M, N)`` is decomposed
            into ``Q``, ``R`` with dimensions ``(..., M, K)``, ``(..., K, N)``,
            where ``K = min(M, N)``.

    Returns:
        cupy.ndarray, or tuple of ndarray:
            Although the type of returned object depends on the mode,
            it returns a tuple of ``(Q, R)`` by default.
            For details, please see the document of :func:`numpy.linalg.qr`.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.qr`
    """
    _util._assert_cupy_array(a)

    if mode not in ('reduced', 'complete', 'r', 'raw'):
        if mode in ('f', 'full', 'e', 'economic'):
            msg = 'The deprecated mode \'{}\' is not supported'.format(mode)
        else:
            msg = 'Unrecognized mode \'{}\''.format(mode)
        raise ValueError(msg)
    if a.ndim > 2:
        return _qr_batched(a, mode)

    # support float32, float64, complex64, and complex128
    dtype, out_dtype = _util.linalg_common_type(a)

    m, n = a.shape
    k = min(m, n)
    if k == 0:
        if mode == 'reduced':
            return cupy.empty((m, 0), out_dtype), cupy.empty((0, n), out_dtype)
        elif mode == 'complete':
            return cupy.identity(m, out_dtype), cupy.empty((m, n), out_dtype)
        elif mode == 'r':
            return cupy.empty((0, n), out_dtype)
        else:  # mode == 'raw'
            return cupy.empty((n, m), out_dtype), cupy.empty((0,), out_dtype)

    x = a.transpose().astype(dtype, order='C', copy=True)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if dtype == 'f':
        geqrf_bufferSize = cusolver.sgeqrf_bufferSize
        geqrf = cusolver.sgeqrf
    elif dtype == 'd':
        geqrf_bufferSize = cusolver.dgeqrf_bufferSize
        geqrf = cusolver.dgeqrf
    elif dtype == 'F':
        geqrf_bufferSize = cusolver.cgeqrf_bufferSize
        geqrf = cusolver.cgeqrf
    elif dtype == 'D':
        geqrf_bufferSize = cusolver.zgeqrf_bufferSize
        geqrf = cusolver.zgeqrf
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)

    # compute working space of geqrf and solve R
    buffersize = geqrf_bufferSize(handle, m, n, x.data.ptr, n)
    workspace = cupy.empty(buffersize, dtype=dtype)
    tau = cupy.empty(k, dtype=dtype)
    geqrf(handle, m, n, x.data.ptr, m,
          tau.data.ptr, workspace.data.ptr, buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        geqrf, dev_info)

    if mode == 'r':
        r = x[:, :k].transpose()
        return _util._triu(r).astype(out_dtype, copy=False)

    if mode == 'raw':
        return (
            x.astype(out_dtype, copy=False),
            tau.astype(out_dtype, copy=False))

    if mode == 'complete' and m > n:
        mc = m
        q = cupy.empty((m, m), dtype)
    else:
        mc = k
        q = cupy.empty((n, m), dtype)
    q[:n] = x

    # compute working space of orgqr and solve Q
    if dtype == 'f':
        orgqr_bufferSize = cusolver.sorgqr_bufferSize
        orgqr = cusolver.sorgqr
    elif dtype == 'd':
        orgqr_bufferSize = cusolver.dorgqr_bufferSize
        orgqr = cusolver.dorgqr
    elif dtype == 'F':
        orgqr_bufferSize = cusolver.cungqr_bufferSize
        orgqr = cusolver.cungqr
    elif dtype == 'D':
        orgqr_bufferSize = cusolver.zungqr_bufferSize
        orgqr = cusolver.zungqr

    buffersize = orgqr_bufferSize(
        handle, m, mc, k, q.data.ptr, m, tau.data.ptr)
    workspace = cupy.empty(buffersize, dtype=dtype)
    orgqr(
        handle, m, mc, k, q.data.ptr, m, tau.data.ptr, workspace.data.ptr,
        buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        orgqr, dev_info)

    q = q[:mc].transpose()
    r = x[:, :mc].transpose()
    return (
        q.astype(out_dtype, copy=False),
        _util._triu(r).astype(out_dtype, copy=False))
Ejemplo n.º 24
0
def gels(a, b):
    """Compute least square solution using cusolverDn<t1><t2>gels().

    Computes the least square solution to a system of ``ax = b``.

    Args:
        a (cupy.ndarray): The matrix with dimension ``(M, N)``.
        b (cupy.ndarray): The matrix with dimension ``(M)`` or ``(M, K)``.

    Returns:
        cupy.ndarray:
            The matrix with dimension ``(N)`` or ``(N, K)``.

    """
    if not check_availability('gels'):
        raise RuntimeError('gels is not available.')

    if a.ndim != 2:
        raise ValueError('a.ndim must be 2 (actual:{})'.format(a.ndim))
    if b.ndim == 1:
        nrhs = 1
    elif b.ndim == 2:
        nrhs = b.shape[1]
    else:
        raise ValueError('b.ndim must be 1 or 2 (actual: {})'.format(b.ndim))
    if a.shape[0] != b.shape[0]:
        raise ValueError('shape mismatch (a:{}, b:{}).'.
                         format(a.shape, b.shape))
    if a.dtype != b.dtype:
        raise ValueError('dtype mismatch (a:{}, b:{}).'.
                         format(a.dtype, b.dtype))

    m, n = a.shape
    if m < n:
        raise ValueError('m must be equal to or greater than n.')
    max_mn = max(m, n)
    b_ndim = b.ndim

    compute_type = _linalg.get_compute_type(a.dtype)
    if a.dtype.char in 'fd':
        if a.dtype.char == 'f':
            t1 = t2 = 's'
        else:
            t1 = t2 = 'd'
        if compute_type == _linalg.COMPUTE_TYPE_FP16:
            t2 = 'h'
        elif compute_type == _linalg.COMPUTE_TYPE_TF32:
            t2 = 'x'
        elif compute_type == _linalg.COMPUTE_TYPE_FP32:
            t2 = 's'
    elif a.dtype.char in 'FD':
        if a.dtype.char == 'F':
            t1 = t2 = 'c'
        else:
            t1 = t2 = 'z'
        if compute_type == _linalg.COMPUTE_TYPE_FP16:
            t2 = 'k'
        elif compute_type == _linalg.COMPUTE_TYPE_TF32:
            t2 = 'y'
        elif compute_type == _linalg.COMPUTE_TYPE_FP32:
            t2 = 'c'
    else:
        raise ValueError('unsupported dtype (actual:{})'.format(a.dtype))
    solver_name = t1 + t2 + 'gels'
    solver = getattr(_cusolver, solver_name)
    helper = getattr(_cusolver, solver_name + '_bufferSize')

    a = a.copy(order='F')
    org_nrhs = nrhs
    if m > n and nrhs == 1:
        # Note: this is workaround as there is bug in cusolverDn<T1><T2>gels()
        # of CUDA 11.0/11.1 and it returns CUSOLVER_STATUS_IRS_NOT_SUPPORTED
        # when m > n and nrhs == 1.
        nrhs = 2
        bb = b.reshape(m, 1)
        b = _cupy.empty((max_mn, nrhs), dtype=a.dtype, order='F')
        b[:m, :] = bb
    else:
        b = b.copy(order='F')
    x = _cupy.empty((max_mn, nrhs), dtype=a.dtype, order='F')
    dinfo = _cupy.empty(1, dtype=_numpy.int32)
    handle = _device.get_cusolver_handle()
    lwork = helper(handle, m, n, nrhs, a.data.ptr, m, b.data.ptr, m,
                   x.data.ptr, max_mn, 0)
    dwork = _cupy.empty(lwork, dtype=_numpy.int8)
    niters = solver(handle, m, n, nrhs, a.data.ptr, m, b.data.ptr, m,
                    x.data.ptr, max_mn, dwork.data.ptr, lwork, dinfo.data.ptr)
    if niters < 0:
        if niters <= -50:
            _warnings.warn('gels reached maximum allowed iterations.')
        else:
            raise RuntimeError('gels has failed ({}).'.format(niters))
    x = x[:n]
    if org_nrhs != nrhs:
        x = x[:, :org_nrhs]
    if b_ndim == 1:
        x = x.reshape(n)
    return x
Ejemplo n.º 25
0
def cholesky(a):
    """Cholesky decomposition.

    Decompose a given two-dimensional square matrix into ``L * L.T``,
    where ``L`` is a lower-triangular matrix and ``.T`` is a conjugate
    transpose operator.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(N, N)``

    Returns:
        cupy.ndarray: The lower-triangular matrix.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.cholesky`
    """
    _util._assert_cupy_array(a)
    _util._assert_nd_squareness(a)

    if a.ndim > 2:
        return _potrf_batched(a)

    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.promote_types(a.dtype.char, 'f').char

    x = a.astype(dtype, order='C', copy=True)
    n = len(a)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if dtype == 'f':
        potrf = cusolver.spotrf
        potrf_bufferSize = cusolver.spotrf_bufferSize
    elif dtype == 'd':
        potrf = cusolver.dpotrf
        potrf_bufferSize = cusolver.dpotrf_bufferSize
    elif dtype == 'F':
        potrf = cusolver.cpotrf
        potrf_bufferSize = cusolver.cpotrf_bufferSize
    else:  # dtype == 'D':
        potrf = cusolver.zpotrf
        potrf_bufferSize = cusolver.zpotrf_bufferSize

    buffersize = potrf_bufferSize(handle, cublas.CUBLAS_FILL_MODE_UPPER, n,
                                  x.data.ptr, n)
    workspace = cupy.empty(buffersize, dtype=dtype)
    potrf(handle, cublas.CUBLAS_FILL_MODE_UPPER, n, x.data.ptr, n,
          workspace.data.ptr, buffersize, dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        potrf, dev_info)

    _util._tril(x, k=0)
    return x
Ejemplo n.º 26
0
def lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True):
    """Solve an equation system, ``a * x = b``, given the LU factorization of ``a``

    Args:
        lu_and_piv (tuple): LU factorization of matrix ``a`` (``(M, M)``)
            together with pivot indices.
        b (cupy.ndarray): The matrix with dimension ``(M,)`` or
            ``(M, N)``.
        trans ({0, 1, 2}): Type of system to solve:

            ========  =========
            trans     system
            ========  =========
            0         a x  = b
            1         a^T x = b
            2         a^H x = b
            ========  =========
        overwrite_b (bool): Allow overwriting data in b (may enhance
            performance)
        check_finite (bool): Whether to check that the input matrices contain
            only finite numbers. Disabling may give a performance gain, but may
            result in problems (crashes, non-termination) if the inputs do
            contain infinities or NaNs.

    Returns:
        cupy.ndarray:
            The matrix with dimension ``(M,)`` or ``(M, N)``.

    .. seealso:: :func:`scipy.linalg.lu_solve`
    """

    (lu, ipiv) = lu_and_piv

    util._assert_cupy_array(lu)
    util._assert_rank2(lu)
    util._assert_nd_squareness(lu)

    m = lu.shape[0]
    if m != b.shape[0]:
        raise ValueError('incompatible dimensions.')

    dtype = lu.dtype
    if dtype.char == 'f':
        getrs = cusolver.sgetrs
    elif dtype.char == 'd':
        getrs = cusolver.dgetrs
    else:
        raise NotImplementedError('Only float32 and float64 are supported.')

    if trans == 0:
        trans = cublas.CUBLAS_OP_N
    elif trans == 1:
        trans = cublas.CUBLAS_OP_T
    elif trans == 2:
        trans = cublas.CUBLAS_OP_C
    else:
        raise ValueError('unknown trans')

    lu = lu.astype(dtype, order='F', copy=False)
    ipiv = ipiv.astype(ipiv.dtype, order='F', copy=True)
    # cuSolver uses 1-origin while SciPy uses 0-origin
    ipiv += 1
    b = b.astype(dtype, order='F', copy=(not overwrite_b))

    if check_finite:
        if lu.dtype.kind == 'f' and not cupy.isfinite(lu).all():
            raise ValueError(
                'array must not contain infs or NaNs.\n'
                'Note that when a singular matrix is given, unlike '
                'scipy.linalg.lu_factor, cupyx.scipy.linalg.lu_factor '
                'returns an array containing NaN.')
        if b.dtype.kind == 'f' and not cupy.isfinite(b).all():
            raise ValueError('array must not contain infs or NaNs')

    n = 1 if b.ndim == 1 else b.shape[1]
    cusolver_handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    # solve for the inverse
    getrs(cusolver_handle, trans, m, n, lu.data.ptr, m, ipiv.data.ptr,
          b.data.ptr, m, dev_info.data.ptr)

    if dev_info[0] < 0:
        raise ValueError('illegal value in %d-th argument of '
                         'internal getrs (lu_solve)' % -dev_info[0])

    return b
Ejemplo n.º 27
0
def svd(a, full_matrices=True, compute_uv=True):
    """Singular Value Decomposition.

    Factorizes the matrix ``a`` as ``u * np.diag(s) * v``, where ``u`` and
    ``v`` are unitary and ``s`` is an one-dimensional array of ``a``'s
    singular values.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(..., M, N)``.
        full_matrices (bool): If True, it returns u and v with dimensions
            ``(..., M, M)`` and ``(..., N, N)``. Otherwise, the dimensions
            of u and v are ``(..., M, K)`` and ``(..., K, N)``, respectively,
            where ``K = min(M, N)``.
        compute_uv (bool): If ``False``, it only returns singular values.

    Returns:
        tuple of :class:`cupy.ndarray`:
            A tuple of ``(u, s, v)`` such that ``a = u * np.diag(s) * v``.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. note::
        On CUDA, when ``a.ndim > 2`` and the matrix dimensions <= 32, a fast
        code path based on Jacobian method (``gesvdj``) is taken. Otherwise,
        a QR method (``gesvd``) is used.

        On ROCm, there is no such a fast code path that switches the underlying
        algorithm.

    .. seealso:: :func:`numpy.linalg.svd`
    """
    _util._assert_cupy_array(a)

    # Cast to float32 or float64
    a_dtype = numpy.promote_types(a.dtype.char, 'f').char
    if a_dtype == 'f':
        s_dtype = 'f'
    elif a_dtype == 'd':
        s_dtype = 'd'
    elif a_dtype == 'F':
        s_dtype = 'f'
    else:  # a_dtype == 'D':
        a_dtype = 'D'
        s_dtype = 'd'

    if a.ndim > 2:
        return _svd_batched(a, a_dtype, full_matrices, compute_uv)

    # Remark 1: gesvd only supports m >= n (WHAT?)
    # Remark 2: gesvd returns matrix U and V^H
    n, m = a.shape

    if m == 0 or n == 0:
        s = cupy.empty((0, ), s_dtype)
        if compute_uv:
            if full_matrices:
                u = cupy.eye(n, dtype=a_dtype)
                vt = cupy.eye(m, dtype=a_dtype)
            else:
                u = cupy.empty((n, 0), dtype=a_dtype)
                vt = cupy.empty((0, m), dtype=a_dtype)
            return u, s, vt
        else:
            return s

    # `a` must be copied because xgesvd destroys the matrix
    if m >= n:
        x = a.astype(a_dtype, order='C', copy=True)
        trans_flag = False
    else:
        m, n = a.shape
        x = a.transpose().astype(a_dtype, order='C', copy=True)
        trans_flag = True

    k = n  # = min(m, n) where m >= n is ensured above
    if compute_uv:
        if full_matrices:
            u = cupy.empty((m, m), dtype=a_dtype)
            vt = x[:, :n]
            job_u = ord('A')
            job_vt = ord('O')
        else:
            u = x
            vt = cupy.empty((k, n), dtype=a_dtype)
            job_u = ord('O')
            job_vt = ord('S')
        u_ptr, vt_ptr = u.data.ptr, vt.data.ptr
    else:
        u_ptr, vt_ptr = 0, 0  # Use nullptr
        job_u = ord('N')
        job_vt = ord('N')
    s = cupy.empty(k, dtype=s_dtype)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if a_dtype == 'f':
        gesvd = cusolver.sgesvd
        gesvd_bufferSize = cusolver.sgesvd_bufferSize
    elif a_dtype == 'd':
        gesvd = cusolver.dgesvd
        gesvd_bufferSize = cusolver.dgesvd_bufferSize
    elif a_dtype == 'F':
        gesvd = cusolver.cgesvd
        gesvd_bufferSize = cusolver.cgesvd_bufferSize
    else:  # a_dtype == 'D':
        gesvd = cusolver.zgesvd
        gesvd_bufferSize = cusolver.zgesvd_bufferSize

    buffersize = gesvd_bufferSize(handle, m, n)
    workspace = cupy.empty(buffersize, dtype=a_dtype)
    if not runtime.is_hip:
        # rwork can be NULL if the information from supperdiagonal isn't needed
        # https://docs.nvidia.com/cuda/cusolver/index.html#cuSolverDN-lt-t-gt-gesvd  # noqa
        rwork_ptr = 0
    else:
        rwork = cupy.empty(min(m, n) - 1, dtype=s_dtype)
        rwork_ptr = rwork.data.ptr
    gesvd(handle, job_u, job_vt, m, n, x.data.ptr, m, s.data.ptr, u_ptr, m,
          vt_ptr, n, workspace.data.ptr, buffersize, rwork_ptr,
          dev_info.data.ptr)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        gesvd, dev_info)

    # Note that the returned array may need to be transposed
    # depending on the structure of an input
    if compute_uv:
        if trans_flag:
            return u.transpose(), s, vt.transpose()
        else:
            return vt, s, u
    else:
        return s
Ejemplo n.º 28
0
def svd(a, full_matrices=True, compute_uv=True):
    """Singular Value Decomposition.

    Factorizes the matrix ``a`` as ``u * np.diag(s) * v``, where ``u`` and
    ``v`` are unitary and ``s`` is an one-dimensional array of ``a``'s
    singular values.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(M, N)``.
        full_matrices (bool): If True, it returns u and v with dimensions
            ``(M, M)`` and ``(N, N)``. Otherwise, the dimensions of u and v
            are respectively ``(M, K)`` and ``(K, N)``, where
            ``K = min(M, N)``.
        compute_uv (bool): If ``False``, it only returns singular values.

    Returns:
        tuple of :class:`cupy.ndarray`:
            A tuple of ``(u, s, v)`` such that ``a = u * np.diag(s) * v``.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.svd`
    """
    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    util._assert_cupy_array(a)
    util._assert_rank2(a)

    # Cast to float32 or float64
    a_dtype = numpy.promote_types(a.dtype.char, 'f').char
    if a_dtype == 'f':
        s_dtype = 'f'
    elif a_dtype == 'd':
        s_dtype = 'd'
    elif a_dtype == 'F':
        s_dtype = 'f'
    else:  # a_dtype == 'D':
        a_dtype = 'D'
        s_dtype = 'd'

    # Remark 1: gesvd only supports m >= n (WHAT?)
    # Remark 2: gesvd only supports jobu = 'A' and jobvt = 'A'
    # Remark 3: gesvd returns matrix U and V^H
    # Remark 4: Remark 2 is removed since cuda 8.0 (new!)
    n, m = a.shape

    # `a` must be copied because xgesvd destroys the matrix
    if m >= n:
        x = a.astype(a_dtype, order='C', copy=True)
        trans_flag = False
    else:
        m, n = a.shape
        x = a.transpose().astype(a_dtype, order='C', copy=True)
        trans_flag = True
    mn = min(m, n)

    if compute_uv:
        if full_matrices:
            u = cupy.empty((m, m), dtype=a_dtype)
            vt = cupy.empty((n, n), dtype=a_dtype)
        else:
            u = cupy.empty((mn, m), dtype=a_dtype)
            vt = cupy.empty((mn, n), dtype=a_dtype)
        u_ptr, vt_ptr = u.data.ptr, vt.data.ptr
    else:
        u_ptr, vt_ptr = 0, 0  # Use nullptr
    s = cupy.empty(mn, dtype=s_dtype)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    if compute_uv:
        job = ord('A') if full_matrices else ord('S')
    else:
        job = ord('N')

    if a_dtype == 'f':
        gesvd = cusolver.sgesvd
        gesvd_bufferSize = cusolver.sgesvd_bufferSize
    elif a_dtype == 'd':
        gesvd = cusolver.dgesvd
        gesvd_bufferSize = cusolver.dgesvd_bufferSize
    elif a_dtype == 'F':
        gesvd = cusolver.cgesvd
        gesvd_bufferSize = cusolver.cgesvd_bufferSize
    else:  # a_dtype == 'D':
        gesvd = cusolver.zgesvd
        gesvd_bufferSize = cusolver.zgesvd_bufferSize

    buffersize = gesvd_bufferSize(handle, m, n)
    workspace = cupy.empty(buffersize, dtype=a_dtype)
    gesvd(handle, job, job, m, n, x.data.ptr, m, s.data.ptr, u_ptr, m, vt_ptr,
          n, workspace.data.ptr, buffersize, 0, dev_info.data.ptr)
    cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed(
        gesvd, dev_info)

    # Note that the returned array may need to be transporsed
    # depending on the structure of an input
    if compute_uv:
        if trans_flag:
            return u.transpose(), s, vt.transpose()
        else:
            return vt, s, u
    else:
        return s
Ejemplo n.º 29
0
def svd(a, full_matrices=True, compute_uv=True):
    """Singular Value Decomposition.

    Factorizes the matrix ``a`` as ``u * np.diag(s) * v``, where ``u`` and
    ``v`` are unitary and ``s`` is an one-dimensional array of ``a``'s
    singular values.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(M, N)``.
        full_matrices (bool): If True, it returns u and v with dimensions
            ``(M, M)`` and ``(N, N)``. Otherwise, the dimensions of u and v
            are respectively ``(M, K)`` and ``(K, N)``, where
            ``K = min(M, N)``.
        compute_uv (bool): If ``False``, it only returns singular values.

    Returns:
        tuple of :class:`cupy.ndarray`:
            A tuple of ``(u, s, v)`` such that ``a = u * np.diag(s) * v``.

    .. seealso:: :func:`numpy.linalg.svd`
    """
    # TODO(Saito): Current implementation only accepts two-dimensional arrays
    util._assert_cupy_array(a)
    util._assert_rank2(a)

    # Cast to float32 or float64
    a_dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char
    if a_dtype == 'f':
        s_dtype = 'f'
    elif a_dtype == 'd':
        s_dtype = 'd'
    elif a_dtype == 'F':
        s_dtype = 'f'
    else:  # a_dtype == 'D':
        a_dtype = 'D'
        s_dtype = 'd'

    # Remark 1: gesvd only supports m >= n (WHAT?)
    # Remark 2: gesvd only supports jobu = 'A' and jobvt = 'A'
    # Remark 3: gesvd returns matrix U and V^H
    # Remark 4: Remark 2 is removed since cuda 8.0 (new!)
    n, m = a.shape

    # `a` must be copied because xgesvd destroys the matrix
    if m >= n:
        x = a.astype(a_dtype, order='C', copy=True)
        trans_flag = False
    else:
        m, n = a.shape
        x = a.transpose().astype(a_dtype, order='C', copy=True)
        trans_flag = True
    mn = min(m, n)

    if compute_uv:
        if full_matrices:
            u = cupy.empty((m, m), dtype=a_dtype)
            vt = cupy.empty((n, n), dtype=a_dtype)
        else:
            u = cupy.empty((mn, m), dtype=a_dtype)
            vt = cupy.empty((mn, n), dtype=a_dtype)
        u_ptr, vt_ptr = u.data.ptr, vt.data.ptr
    else:
        u_ptr, vt_ptr = 0, 0  # Use nullptr
    s = cupy.empty(mn, dtype=s_dtype)
    handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)
    if compute_uv:
        job = ord('A') if full_matrices else ord('S')
    else:
        job = ord('N')
    if a_dtype == 'f':
        buffersize = cusolver.sgesvd_bufferSize(handle, m, n)
        workspace = cupy.empty(buffersize, dtype=a_dtype)
        cusolver.sgesvd(
            handle, job, job, m, n, x.data.ptr, m,
            s.data.ptr, u_ptr, m, vt_ptr, n,
            workspace.data.ptr, buffersize, 0, dev_info.data.ptr)
    elif a_dtype == 'd':
        buffersize = cusolver.dgesvd_bufferSize(handle, m, n)
        workspace = cupy.empty(buffersize, dtype=a_dtype)
        cusolver.dgesvd(
            handle, job, job, m, n, x.data.ptr, m,
            s.data.ptr, u_ptr, m, vt_ptr, n,
            workspace.data.ptr, buffersize, 0, dev_info.data.ptr)
    elif a_dtype == 'F':
        buffersize = cusolver.cgesvd_bufferSize(handle, m, n)
        workspace = cupy.empty(buffersize, dtype=a_dtype)
        cusolver.cgesvd(
            handle, job, job, m, n, x.data.ptr, m,
            s.data.ptr, u_ptr, m, vt_ptr, n,
            workspace.data.ptr, buffersize, 0, dev_info.data.ptr)
    else:  # a_dtype == 'D':
        buffersize = cusolver.zgesvd_bufferSize(handle, m, n)
        workspace = cupy.empty(buffersize, dtype=a_dtype)
        cusolver.zgesvd(
            handle, job, job, m, n, x.data.ptr, m,
            s.data.ptr, u_ptr, m, vt_ptr, n,
            workspace.data.ptr, buffersize, 0, dev_info.data.ptr)

    status = int(dev_info[0])
    if status > 0:
        raise linalg.LinAlgError(
            'SVD computation does not converge')
    elif status < 0:
        raise linalg.LinAlgError(
            'Parameter error (maybe caused by a bug in cupy.linalg?)')

    # Note that the returned array may need to be transporsed
    # depending on the structure of an input
    if compute_uv:
        if trans_flag:
            return u.transpose(), s, vt.transpose()
        else:
            return vt, s, u
    else:
        return s
Ejemplo n.º 30
0
def gesvda(a, compute_uv=True):
    """Singular value decomposition using cusolverDn<t>gesvdaStridedBatched().

    Factorizes the matrix ``a`` into two unitary matrices ``u`` and ``v`` and
    a singular values vector ``s`` such that ``a == u @ diag(s) @ v*``.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(.., M, N)``.
        compute_uv (bool): If ``False``, it only returns singular values.

    Returns:
        tuple of :class:`cupy.ndarray`:
            A tuple of ``(u, s, v)``.
    """
    if not check_availability('gesvda'):
        raise RuntimeError('gesvda is not available.')

    assert a.ndim >= 2
    a_ndim = a.ndim
    a_shape = a.shape
    m, n = a_shape[-2:]
    assert m >= n

    if a.dtype == 'f':
        helper = cusolver.sgesvdaStridedBatched_bufferSize
        solver = cusolver.sgesvdaStridedBatched
        s_dtype = 'f'
    elif a.dtype == 'd':
        helper = cusolver.dgesvdaStridedBatched_bufferSize
        solver = cusolver.dgesvdaStridedBatched
        s_dtype = 'd'
    elif a.dtype == 'F':
        helper = cusolver.cgesvdaStridedBatched_bufferSize
        solver = cusolver.cgesvdaStridedBatched
        s_dtype = 'f'
    elif a.dtype == 'D':
        helper = cusolver.zgesvdaStridedBatched_bufferSize
        solver = cusolver.zgesvdaStridedBatched
        s_dtype = 'd'
    else:
        raise TypeError

    handle = device.get_cusolver_handle()
    if compute_uv:
        jobz = cusolver.CUSOLVER_EIG_MODE_VECTOR
    else:
        jobz = cusolver.CUSOLVER_EIG_MODE_NOVECTOR
    rank = min(m, n)
    if a_ndim == 2:
        batch_size = 1
    else:
        batch_size = numpy.array(a_shape[:-2]).prod().item()
    a = a.reshape((batch_size, m, n))
    a = cupy.ascontiguousarray(a.transpose(0, 2, 1))
    lda = m
    stride_a = lda * n
    s = cupy.empty((batch_size, rank), dtype=s_dtype)
    stride_s = rank
    ldu = m
    ldv = n
    u = cupy.empty((batch_size, rank, ldu), dtype=a.dtype, order='C')
    v = cupy.empty((batch_size, rank, ldv), dtype=a.dtype, order='C')
    stride_u = rank * ldu
    stride_v = rank * ldv
    lwork = helper(handle, jobz, rank, m, n, a.data.ptr, lda, stride_a,
                   s.data.ptr, stride_s, u.data.ptr, ldu, stride_u, v.data.ptr,
                   ldv, stride_v, batch_size)
    work = cupy.empty((lwork, ), dtype=a.dtype)
    info = cupy.empty((batch_size, ), dtype=numpy.int32)
    r_norm = numpy.empty((batch_size, ), dtype=numpy.float64)
    solver(handle, jobz, rank, m, n, a.data.ptr, lda, stride_a, s.data.ptr,
           stride_s, u.data.ptr, ldu, stride_u, v.data.ptr, ldv, stride_v,
           work.data.ptr, lwork, info.data.ptr, r_norm.ctypes.data, batch_size)

    s = s.reshape(a_shape[:-2] + (s.shape[-1], ))
    if not compute_uv:
        return s

    u = u.transpose(0, 2, 1)
    v = v.transpose(0, 2, 1)
    u = u.reshape(a_shape[:-2] + (u.shape[-2:]))
    v = v.reshape(a_shape[:-2] + (v.shape[-2:]))
    return u, s, v
Ejemplo n.º 31
0
def inv(a):
    """Computes the inverse of a matrix.

    This function computes matrix ``a_inv`` from n-dimensional regular matrix
    ``a`` such that ``dot(a, a_inv) == eye(n)``.

    Args:
        a (cupy.ndarray): The regular matrix

    Returns:
        cupy.ndarray: The inverse of a matrix.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.inv`
    """
    if a.ndim >= 3:
        return _batched_inv(a)

    # to prevent `a` to be overwritten
    a = a.copy()

    util._assert_cupy_array(a)
    util._assert_rank2(a)
    util._assert_nd_squareness(a)

    # support float32, float64, complex64, and complex128
    if a.dtype.char in 'fdFD':
        dtype = a.dtype.char
    else:
        dtype = numpy.find_common_type((a.dtype.char, 'f'), ()).char

    cusolver_handle = device.get_cusolver_handle()
    dev_info = cupy.empty(1, dtype=numpy.int32)

    ipiv = cupy.empty((a.shape[0], 1), dtype=numpy.intc)

    if dtype == 'f':
        getrf = cusolver.sgetrf
        getrf_bufferSize = cusolver.sgetrf_bufferSize
        getrs = cusolver.sgetrs
    elif dtype == 'd':
        getrf = cusolver.dgetrf
        getrf_bufferSize = cusolver.dgetrf_bufferSize
        getrs = cusolver.dgetrs
    elif dtype == 'F':
        getrf = cusolver.cgetrf
        getrf_bufferSize = cusolver.cgetrf_bufferSize
        getrs = cusolver.cgetrs
    elif dtype == 'D':
        getrf = cusolver.zgetrf
        getrf_bufferSize = cusolver.zgetrf_bufferSize
        getrs = cusolver.zgetrs
    else:
        msg = ('dtype must be float32, float64, complex64 or complex128'
               ' (actual: {})'.format(a.dtype))
        raise ValueError(msg)

    m = a.shape[0]

    buffersize = getrf_bufferSize(cusolver_handle, m, m, a.data.ptr, m)
    workspace = cupy.empty(buffersize, dtype=dtype)

    # LU factorization
    getrf(cusolver_handle, m, m, a.data.ptr, m, workspace.data.ptr,
          ipiv.data.ptr, dev_info.data.ptr)
    cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed(
        getrf, dev_info)

    b = cupy.eye(m, dtype=dtype)

    # solve for the inverse
    getrs(cusolver_handle, 0, m, m, a.data.ptr, m, ipiv.data.ptr, b.data.ptr,
          m, dev_info.data.ptr)
    cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed(
        getrs, dev_info)

    return b
Ejemplo n.º 32
0
def gesvdj(a, full_matrices=True, compute_uv=True, overwrite_a=False):
    """Singular value decomposition using cusolverDn<t>gesvdj().

    Factorizes the matrix ``a`` into two unitary matrices ``u`` and ``v`` and
    a singular values vector ``s`` such that ``a == u @ diag(s) @ v*``.

    Args:
        a (cupy.ndarray): The input matrix with dimension ``(M, N)``.
        full_matrices (bool): If True, it returns u and v with dimensions
            ``(M, M)`` and ``(N, N)``. Otherwise, the dimensions of u and v
            are respectively ``(M, K)`` and ``(K, N)``, where
            ``K = min(M, N)``.
        compute_uv (bool): If ``False``, it only returns singular values.
        overwrite_a (bool): If ``True``, matrix ``a`` might be overwritten.

    Returns:
        tuple of :class:`cupy.ndarray`:
            A tuple of ``(u, s, v)``.
    """
    if not check_availability('gesvdj'):
        raise RuntimeError('gesvdj is not available.')

    if a.ndim == 3:
        return _gesvdj_batched(a, full_matrices, compute_uv, overwrite_a)

    assert a.ndim == 2

    if a.dtype == 'f':
        helper = cusolver.sgesvdj_bufferSize
        solver = cusolver.sgesvdj
        s_dtype = 'f'
    elif a.dtype == 'd':
        helper = cusolver.dgesvdj_bufferSize
        solver = cusolver.dgesvdj
        s_dtype = 'd'
    elif a.dtype == 'F':
        helper = cusolver.cgesvdj_bufferSize
        solver = cusolver.cgesvdj
        s_dtype = 'f'
    elif a.dtype == 'D':
        helper = cusolver.zgesvdj_bufferSize
        solver = cusolver.zgesvdj
        s_dtype = 'd'
    else:
        raise TypeError

    handle = device.get_cusolver_handle()
    m, n = a.shape
    a = cupy.array(a, order='F', copy=not overwrite_a)
    lda = m
    mn = min(m, n)
    s = cupy.empty(mn, dtype=s_dtype)
    ldu = m
    ldv = n
    if compute_uv:
        jobz = cusolver.CUSOLVER_EIG_MODE_VECTOR
    else:
        jobz = cusolver.CUSOLVER_EIG_MODE_NOVECTOR
        full_matrices = False
    if full_matrices:
        econ = 0
        u = cupy.empty((ldu, m), dtype=a.dtype, order='F')
        v = cupy.empty((ldv, n), dtype=a.dtype, order='F')
    else:
        econ = 1
        u = cupy.empty((ldu, mn), dtype=a.dtype, order='F')
        v = cupy.empty((ldv, mn), dtype=a.dtype, order='F')
    params = cusolver.createGesvdjInfo()
    lwork = helper(handle, jobz, econ, m, n, a.data.ptr, lda, s.data.ptr,
                   u.data.ptr, ldu, v.data.ptr, ldv, params)
    work = cupy.empty(lwork, dtype=a.dtype)
    info = cupy.empty(1, dtype=numpy.int32)
    solver(handle, jobz, econ, m, n, a.data.ptr, lda, s.data.ptr, u.data.ptr,
           ldu, v.data.ptr, ldv, work.data.ptr, lwork, info.data.ptr, params)
    cupy.linalg.util._check_cusolver_dev_info_if_synchronization_allowed(
        gesvdj, info)

    cusolver.destroyGesvdjInfo(params)
    if compute_uv:
        return u, s, v
    else:
        return s