Ejemplo n.º 1
0
    def get_spectra(self,
                    streakspeed_in_meV_per_fs,
                    keep_originals=False,
                    discretized=True):
        '''returns streaked spectra, measured with "number_electronsx" simulated electrons or nondiscretized as a tuple'''
        from streaking_cal.statistics import weighted_avg_and_std

        if not (self.is_low_res()):

            (streaked1, streaked2
             ) = self.__get_streaked_spectra(streakspeed_in_meV_per_fs)

            streaked1 = interp(tof_ens_gpu, self.__eAxis, streaked1)
            streaked2 = interp(tof_ens_gpu, self.__eAxis, streaked2)
            xuvonly = interp(tof_ens_gpu, self.__eAxis,
                             cp.square(cp.abs(self.__spec)))

            if not (keep_originals):
                self.__eAxis = None
                self.__spec = None
                t_square = cp.square(cp.abs(self.__temp))
                t_mean, _ = weighted_avg_and_std(self.__tAxis.get(),
                                                 t_square.get())
                self.__temp = interp(cp.asarray(standard_full_time),
                                     self.__tAxis - t_mean, t_square).get()
                self.__temp = self.__temp / cp.sum(self.__temp)
                self.__tAxis = standard_full_time
                self.__is_low_res = True
                self.__streakedspectra = np.asarray(
                    (xuvonly.get(), streaked1.get(), streaked2.get()))
                self.__streakspeed = streakspeed_in_meV_per_fs
                self.__tAxis = standard_full_time

            if discretized:
                streaked1 = self.discretized_spectrum(streaked1,
                                                      self.num_electrons1)
                streaked2 = self.discretized_spectrum(streaked2,
                                                      self.num_electrons2)

            self.__streakspeed = streakspeed_in_meV_per_fs

            return cp.asnumpy(xuvonly), cp.asnumpy(streaked1), cp.asnumpy(
                streaked2)

        elif discretized:
            (xuvonly, streaked1, streaked2) = self.__streakedspectra
            streaked1 = self.discretized_spectrum(streaked1,
                                                  self.num_electrons1)
            streaked2 = self.discretized_spectrum(streaked2,
                                                  self.num_electrons2)

            return cp.asnumpy(xuvonly), cp.asnumpy(streaked1), cp.asnumpy(
                streaked2)

        else:
            return self.__streakedspectra.copy()
Ejemplo n.º 2
0
def _index_or_values_interpolation(column, index=None):
    """
    Interpolate over a float column. assumes a linear interpolation
    strategy using the index of the data to denote spacing of the x
    values. For example the data and index [1.0, NaN, 4.0], [1, 3, 4]
    would result in [1.0, 3.0, 4.0]
    """
    # figure out where the nans are
    mask = cp.isnan(column)

    # trivial cases, all nan or no nans
    num_nan = mask.sum()
    if num_nan == 0 or num_nan == len(column):
        return column

    to_interp = Frame(data={None: column}, index=index)
    known_x_and_y = to_interp._apply_boolean_mask(as_column(~mask))

    known_x = known_x_and_y._index._column.values
    known_y = known_x_and_y._data.columns[0].values

    result = cp.interp(to_interp._index.values, known_x, known_y)

    # find the first nan
    first_nan_idx = (mask == 0).argmax().item()
    result[:first_nan_idx] = np.nan
    return result
Ejemplo n.º 3
0
    def resampled_TOF_signal(self, TOF_signal):
        from numpy import take_along_axis, interp

        sorted_TOF_signal = take_along_axis(TOF_signal,
                                            self.TOF_times_sort_order,
                                            axis=0)
        resampled_TOF_signal = interp(Raw_data.TOF_times,
                                      self.sorted_TOF_times, sorted_TOF_signal)

        return resampled_TOF_signal
Ejemplo n.º 4
0
    def resampled_VLS_signal(self, VLS_signal):
        from numpy import take_along_axis, interp

        sorted_VLS_signal = take_along_axis(VLS_signal,
                                            self.VLS_pixels_sort_order,
                                            axis=0)
        resampled_VLS_signal = interp(Raw_data.VLS_pixels,
                                      self.sorted_VLS_pixels,
                                      sorted_VLS_signal)

        return resampled_VLS_signal
Ejemplo n.º 5
0
def _match_cumulative_cdf(source, template):
    """
    Return modified source array so that the cumulative density function of
    its values matches the cumulative density function of the template.
    """
    src_values, src_unique_indices, src_counts = cp.unique(source.ravel(),
                                                           return_inverse=True,
                                                           return_counts=True)
    tmpl_values, tmpl_counts = cp.unique(template.ravel(), return_counts=True)

    # calculate normalized quantiles for each array
    src_quantiles = cp.cumsum(src_counts) / source.size
    tmpl_quantiles = cp.cumsum(tmpl_counts) / template.size

    interp_a_values = cp.interp(src_quantiles, tmpl_quantiles, tmpl_values)
    return interp_a_values[src_unique_indices].reshape(source.shape)
Ejemplo n.º 6
0
def GetSASE_gpu(CentralEnergy, dE_FWHM, dt_FWHM, samples=0, onlyT=False):
    from cupy import interp
    import cupy as cp
    h = 4.135667662  #in eV*fs
    dE = dE_FWHM / 2.355  #in eV, converts to sigma
    dt = dt_FWHM / 2.355  #in fs, converts to sigma
    if samples == 0:
        samples = int(600. * dt * CentralEnergy / h)
    else:
        if (samples < 400. * dt * CentralEnergy / h):
            print(
                "Number of samples is a little small, proceeding anyway. Got",
                samples, "prefer more than", 400. * dt * CentralEnergy / h)

    EnAxis = cp.linspace(0.,
                         20. * CentralEnergy,
                         num=samples,
                         dtype=cp.float32)
    newEaxis = cp.linspace(0, 140, 32 * 1024)
    #     EnInput=cp.zeros(samples, dtype=cp.complex64)
    #     for i in range(samples):
    EnInput = cp.exp(-(EnAxis - CentralEnergy)**2 / 2. / dE**2 +
                     2 * cp.pi * 1j * cp.random.random(size=samples),
                     dtype=cp.complex64)
    EnInput = interp(newEaxis, EnAxis, EnInput)

    newTaxis = cp.fft.fftfreq(32 * 1024, d=140 / (32 * 1024)) * h
    TOutput = cp.exp(-newTaxis**2 / 2. / dt**2) * cp.fft.fft(EnInput)

    #     sort TOutput and newTaxis
    ind = cp.argsort(newTaxis, axis=0)
    newTaxis = cp.sort(newTaxis)
    TOutput = cp.take_along_axis(TOutput, ind, axis=0)

    #     En_FFT=cp.fft.fft(EnInput)
    #     TAxis=cp.fft.fftfreq(samples,d=(20.*CentralEnergy)/samples)*h
    #     TOutput=cp.exp(-TAxis**2/2./dt**2)*En_FFT
    if not (onlyT):
        EnOutput = cp.fft.ifft(TOutput)
    if (onlyT):
        return newTaxis, TOutput
    else:
        return newEaxis, EnOutput, newTaxis, TOutput
Ejemplo n.º 7
0
def equalize_hist(image, nbins=256, mask=None):
    """Return image after histogram equalization.

    Parameters
    ----------
    image : array
        Image array.
    nbins : int, optional
        Number of bins for image histogram. Note: this argument is
        ignored for integer images, for which each integer is its own
        bin.
    mask: ndarray of bools or 0s and 1s, optional
        Array of same shape as `image`. Only points at which mask == True
        are used for the equalization, which is applied to the whole image.

    Returns
    -------
    out : float array
        Image array after histogram equalization.

    Notes
    -----
    This function is adapted from [1]_ with the author's permission.

    References
    ----------
    .. [1] http://www.janeriksolem.net/histogram-equalization-with-python-and.html
    .. [2] https://en.wikipedia.org/wiki/Histogram_equalization

    """
    if mask is not None:
        mask = cp.array(mask, dtype=bool)
        cdf, bin_centers = cumulative_distribution(image[mask], nbins)
    else:
        cdf, bin_centers = cumulative_distribution(image, nbins)
    if False:
        out = cp.interp(image.flat, bin_centers, cdf)
    else:
        # TODO: grlee77: no cp.interp, so have to transfer
        out = cp.asarray(
            np.interp(image.get().flat, bin_centers.get(), cdf.get())
        )
    return out.reshape(image.shape)
Ejemplo n.º 8
0
def _match_cumulative_cdf(source, template):
    """
    Return modified source array so that the cumulative density function of
    its values matches the cumulative density function of the template.
    """
    src_values, src_unique_indices, src_counts = cp.unique(source.ravel(),
                                                           return_inverse=True,
                                                           return_counts=True)
    tmpl_values, tmpl_counts = cp.unique(template.ravel(), return_counts=True)

    # calculate normalized quantiles for each array
    src_quantiles = cp.cumsum(src_counts) / source.size
    tmpl_quantiles = cp.cumsum(tmpl_counts) / template.size

    # TODO: grlee77: cp.interp does not exist, so have to transfer to CPU
    if not hasattr(cp, "interp"):
        src_quantiles = src_quantiles.get()
        tmpl_quantiles = tmpl_quantiles.get()
        tmpl_values = tmpl_values.get()
        interp_a_values = cp.asarray(
            np.interp(src_quantiles, tmpl_quantiles, tmpl_values))
    else:
        interp_a_values = cp.interp(src_quantiles, tmpl_quantiles, tmpl_values)
    return interp_a_values[src_unique_indices].reshape(source.shape)
Ejemplo n.º 9
0
    def _calibrate(self, img, findCarrier = True, useCupy = False):
        assert len(img) > 2
        self.N = len(img[0, :, :])
        if self.N != self._lastN:
            self._allocate_arrays()

        ''' define k grids '''
        self._dx = self.pixelsize / self.magnification  # Sampling in image plane
        self._res = self.wavelength / (2 * self.NA)
        self._oversampling = self._res / self._dx
        self._dk = self._oversampling / (self.N / 2)  # Sampling in frequency plane
        self._k = np.arange(-self._dk * self.N / 2, self._dk * self.N / 2, self._dk, dtype=np.double)
        self._dx2 = self._dx / 2

        self._kr = np.sqrt(self._k ** 2 + self._k[:,np.newaxis] ** 2, dtype=np.single)
        kxbig = np.arange(-self._dk * self.N, self._dk * self.N, self._dk, dtype=np.single)
        kybig = kxbig[:,np.newaxis]

        '''Sum input images if there are more than 3'''
        if len(img) > 3:
            imgs = np.zeros((3, self.N, self.N), dtype=np.single)
            for i in range(3):
                imgs[i, :, :] = np.sum(img[i:(len(img) // 3) * 3:3, :, :], 0, dtype = np.single)
        else:
            imgs = np.single(img)

        '''Separate bands into DC and 1 high frequency band'''
        M = exp(1j * 2 * pi / 3) ** ((np.arange(0, 2)[:, np.newaxis]) * np.arange(0, 3))

        sum_prepared_comp = np.zeros((2, self.N, self.N), dtype=np.complex64)
        wienerfilter = np.zeros((2 * self.N, 2 * self.N), dtype=np.single)

        for k in range(0, 2):
            for l in range(0, 3):
                sum_prepared_comp[k, :, :] = sum_prepared_comp[k, :, :] + imgs[l, :, :] * M[k, l]

        if findCarrier:
            # minimum search radius in k-space
            mask1 = (self._kr > 1.9 * self.eta)
            if useCupy:
                self.kx, self.ky = self._coarseFindCarrier_cupy(sum_prepared_comp[0, :, :],
                                                                sum_prepared_comp[1, :, :], mask1)
            else:
                self.kx, self.ky = self._coarseFindCarrier(sum_prepared_comp[0, :, :],
                                                           sum_prepared_comp[1, :, :], mask1)

        if useCupy:
            ckx, cky, p, ampl = self._refineCarrier_cupy(sum_prepared_comp[0, :, :],
                                                         sum_prepared_comp[1, :, :], self.kx, self.ky)
        else:
            ckx, cky, p, ampl = self._refineCarrier(sum_prepared_comp[0, :, :],
                                                    sum_prepared_comp[1, :, :], self.kx, self.ky)

        self.kx = ckx # store found kx, ky, p and ampl values
        self.ky = cky
        self.p = p
        self.ampl = ampl

        if self.debug:
            print(f'kx = {ckx}')
            print(f'ky = {cky}')
            print(f'p  = {p}')
            print(f'a  = {ampl}')

        ph = np.single(2 * pi * self.NA / self.wavelength)

        xx = np.arange(-self._dx2 * self.N, self._dx2 * self.N, self._dx2, dtype=np.single)
        yy = xx

        if self.usemodulation:
            A = ampl
        else:
            A = 1

        for idx_p in range(0, 3):
            pstep = idx_p * 2 * pi / 3
            if useCupy:
                self._reconfactor[idx_p, :, :] = (
                        1 + 4 / A * cp.outer(cp.exp(cp.asarray(1j * (ph * cky * yy - pstep + p))),
                                             cp.exp(cp.asarray(1j * ph * ckx * xx))).real).get()
            else:
                self._reconfactor[idx_p, :, :] = (
                        1 + 4 / A * np.outer(np.exp(1j * (ph * cky * yy - pstep + p)),
                                             np.exp(1j * ph * ckx * xx)).real)

        # calculate pre-filter factors

        mask2 = (self._kr < 2)

        self._prefilter = np.single((self._tfm(self._kr, mask2) * self._attm(self._kr, mask2)))
        self._prefilter = fft.fftshift(self._prefilter)

        mtot = np.full((2 * self.N, 2 * self.N), False)

        krbig = sqrt((kxbig - ckx) ** 2 + (kybig - cky) ** 2)
        mask = (krbig < 2)
        mtot = mtot | mask
        wienerfilter[mask] = wienerfilter[mask] + (self._tf(krbig[mask]) ** 2) * self._att(krbig[mask])
        krbig = sqrt((kxbig + ckx) ** 2 + (kybig + cky) ** 2)
        mask = (krbig < 2)
        mtot = mtot | mask
        wienerfilter[mask] = wienerfilter[mask] + (self._tf(krbig[mask]) ** 2) * self._att(krbig[mask])
        krbig = sqrt(kxbig ** 2 + kybig ** 2)
        mask = (krbig < 2)
        mtot = mtot | mask
        wienerfilter[mask] = wienerfilter[mask] + (self._tf(krbig[mask]) ** 2) * self._att(krbig[mask])
        self.wienerfilter = wienerfilter

        if self.debug:
            plt.figure()
            plt.title('WienerFilter')
            plt.imshow(wienerfilter)

        th = np.linspace(0, 2 * pi, 360, dtype = np.single)
        inv = np.geterr()['invalid']
        np.seterr(invalid = 'ignore')
        kmaxth = np.fmax(2, np.fmax(ckx * np.cos(th) + cky * np.sin(th) +
                                        np.sqrt(4 - (ckx * np.sin(th)) ** 2  - (cky * np.cos(th)) ** 2  +
                                            ckx * cky * np.sin(2 * th)),
                                    - ckx * np.cos(th) - cky * np.sin(th) +
                                        np.sqrt(4 - (ckx * np.sin(th)) ** 2  - (cky * np.cos(th)) ** 2  +
                                            ckx * cky * np.sin(2 * th))))
        np.seterr(invalid = inv)

        if useCupy and 'interp' in dir(cp):  # interp not available in cupy version < 9.0.0
            kmax = cp.interp(cp.arctan2(cp.asarray(kybig), cp.asarray(kxbig)), cp.asarray(th), cp.asarray(kmaxth), period=2 * pi).astype(np.single).get()
        else:
            kmax = np.interp(np.arctan2(kybig, kxbig), th, kmaxth, period=2 * pi).astype(np.single)

        wienerfilter = mtot * (1 - krbig * mtot / kmax) / (wienerfilter * mtot + self.w ** 2)

        self._postfilter = fft.fftshift(wienerfilter)

        if opencv:
            self._reconfactorU = [cv2.UMat(self._reconfactor[idx_p, :, :]) for idx_p in range(0, 3)]
            self._prefilter_ocv = np.single(cv2.dft(fft.ifft2(self._prefilter).real))
            pf = np.zeros((self.N, self.N, 2), dtype=np.single)
            pf[:, :, 0] = self._prefilter
            pf[:, :, 1] = self._prefilter
            self._prefilter_ocvU = cv2.UMat(np.single(pf))
            self._postfilter_ocv = np.single(cv2.dft(fft.ifft2(self._postfilter).real))
            pf = np.zeros((2 * self.N, 2 * self.N, 2), dtype=np.single)
            pf[:, :, 0] = self._postfilter
            pf[:, :, 1] = self._postfilter
            self._postfilter_ocvU = cv2.UMat(np.single(pf))

        if cupy:
            self._postfilter_cp = cp.asarray(self._postfilter)
Ejemplo n.º 10
0
    def _calibrate(self, img, findCarrier=True, useCupy=False):
        assert len(img) > 6
        self.N = len(img[0, :, :])
        if self.N != self._lastN:
            self._allocate_arrays()
        ''' define k grids '''
        self._dx = self.pixelsize / self.magnification  # Sampling in image plane
        self._res = self.wavelength / (2 * self.NA)
        self._oversampling = self._res / self._dx
        self._dk = self._oversampling / (self.N / 2
                                         )  # Sampling in frequency plane
        self._k = np.arange(-self._dk * self.N / 2,
                            self._dk * self.N / 2,
                            self._dk,
                            dtype=np.double)
        self._dx2 = self._dx / 2

        self._kr = np.sqrt(self._k**2 + self._k[:, np.newaxis]**2,
                           dtype=np.single)
        kxbig = np.arange(-self._dk * self.N,
                          self._dk * self.N,
                          self._dk,
                          dtype=np.single)
        kybig = kxbig[:, np.newaxis]
        '''Sum input images if there are more than 7'''
        if len(img) > 7:
            imgs = np.zeros((7, self.N, self.N), dtype=np.single)
            for i in range(7):
                imgs[i, :, :] = np.sum(img[i:(len(img) // 7) * 7:7, :, :],
                                       0,
                                       dtype=np.single)
        else:
            imgs = np.single(img)
        '''Separate bands into DC and 3 high frequency bands'''
        M = np.complex64(
            exp(1j * 2 * pi / 7)**((np.arange(0, 4)[:, np.newaxis]) *
                                   np.arange(0, 7)))

        wienerfilter = np.zeros((2 * self.N, 2 * self.N), dtype=np.single)

        if useCupy:
            sum_prepared_comp = cp.dot(cp.asarray(M),
                                       cp.asarray(imgs).transpose(
                                           (1, 0, 2))).get()
        else:
            sum_prepared_comp = np.zeros((4, self.N, self.N),
                                         dtype=np.complex64)
            for k in range(0, 4):
                for l in range(0, 7):
                    sum_prepared_comp[k, :, :] = sum_prepared_comp[
                        k, :, :] + imgs[l, :, :] * M[k, l]

        # find parameters
        ckx = np.zeros((3, 1), dtype=np.single)
        cky = np.zeros((3, 1), dtype=np.single)
        p = np.zeros((3, 1), dtype=np.single)
        ampl = np.zeros((3, 1), dtype=np.single)

        if findCarrier:
            # minimum search radius in k-space
            mask1 = (self._kr > 1.9 * self.eta)
            for i in range(0, 3):
                if useCupy:
                    self.kx[i], self.ky[i] = self._coarseFindCarrier_cupy(
                        sum_prepared_comp[0, :, :],
                        sum_prepared_comp[i + 1, :, :], mask1)
                else:
                    self.kx[i], self.ky[i] = self._coarseFindCarrier(
                        sum_prepared_comp[0, :, :],
                        sum_prepared_comp[i + 1, :, :], mask1)
        for i in range(0, 3):
            if useCupy:
                ckx[i], cky[i], p[i], ampl[i] = self._refineCarrier_cupy(
                    sum_prepared_comp[0, :, :], sum_prepared_comp[i + 1, :, :],
                    self.kx[i], self.ky[i])
            else:
                ckx[i], cky[i], p[i], ampl[i] = self._refineCarrier(
                    sum_prepared_comp[0, :, :], sum_prepared_comp[i + 1, :, :],
                    self.kx[i], self.ky[i])

        self.kx = ckx  # store found kx, ky, p and ampl values
        self.ky = cky
        self.p = p
        self.ampl = ampl

        if self.debug:
            print(f'kx = {ckx[0]}, {ckx[1]}, {ckx[2]}')
            print(f'ky = {cky[0]}, {cky[1]}, {cky[2]}')
            print(f'p  = {p[0]}, {p[1]}, {p[2]}')
            print(f'a  = {ampl[0]}, {ampl[1]}, {ampl[2]}')

        ph = np.single(2 * pi * self.NA / self.wavelength)

        xx = np.arange(-self._dx2 * self.N,
                       self._dx2 * self.N,
                       self._dx2,
                       dtype=np.single)
        yy = xx

        if self.usemodulation:
            A = [float(ampl[i]) for i in range(3)]
        else:
            if self.axial:
                A = [6.0 for i in range(3)]
            else:
                A = [12.0 for i in range(3)]

        for idx_p in range(0, 7):
            pstep = idx_p * 2 * pi / 7
            if useCupy:
                self._reconfactor[idx_p, :, :] = (
                    1 + 4 / A[0] * cp.outer(
                        cp.exp(
                            cp.asarray(1j *
                                       (ph * cky[0] * yy - pstep + p[0]))),
                        cp.exp(cp.asarray(1j * ph * ckx[0] * xx))).real +
                    4 / A[1] * cp.outer(
                        cp.exp(
                            cp.asarray(1j *
                                       (ph * cky[1] * yy - 2 * pstep + p[1]))),
                        cp.exp(cp.asarray(1j * ph * ckx[1] * xx))).real +
                    4 / A[2] * cp.outer(
                        cp.exp(
                            cp.asarray(1j *
                                       (ph * cky[2] * yy - 3 * pstep + p[2]))),
                        cp.exp(cp.asarray(1j * ph * ckx[2] * xx))).real).get()
            else:
                self._reconfactor[idx_p, :, :] = (1 + 4 / A[0] * np.outer(
                    np.exp(1j * (ph * cky[0] * yy - pstep + p[0])),
                    np.exp(1j * ph * ckx[0] * xx)).real + 4 / A[1] * np.outer(
                        np.exp(1j * (ph * cky[1] * yy - 2 * pstep + p[1])),
                        np.exp(
                            1j * ph * ckx[1] * xx)).real + 4 / A[2] * np.outer(
                                np.exp(1j *
                                       (ph * cky[2] * yy - 3 * pstep + p[2])),
                                np.exp(1j * ph * ckx[2] * xx)).real)

        # calculate pre-filter factors

        mask2 = (self._kr < 2)

        self._prefilter = np.single(
            (self._tfm(self._kr, mask2) * self._attm(self._kr, mask2)))
        self._prefilter = fft.fftshift(self._prefilter)

        mtot = np.full((2 * self.N, 2 * self.N), False)

        th = np.linspace(0, 2 * pi, 360, dtype=np.single)
        inv = np.geterr()['invalid']
        kmaxth = 2

        for i in range(0, 3):
            krbig = sqrt((kxbig - ckx[i])**2 + (kybig - cky[i])**2)
            mask = (krbig < 2)
            mtot = mtot | mask
            wienerfilter[mask] = wienerfilter[mask] + (self._tf(
                krbig[mask])**2) * self._att(krbig[mask])
            krbig = sqrt((kxbig + ckx[i])**2 + (kybig + cky[i])**2)
            mask = (krbig < 2)
            mtot = mtot | mask
            wienerfilter[mask] = wienerfilter[mask] + (self._tf(
                krbig[mask])**2) * self._att(krbig[mask])
            np.seterr(invalid='ignore'
                      )  # Silence sqrt warnings for kmaxth calculations
            kmaxth = np.fmax(
                kmaxth,
                np.fmax(
                    ckx[i] * np.cos(th) + cky[i] * np.sin(th) +
                    np.sqrt(4 - (ckx[i] * np.sin(th))**2 -
                            (cky[i] * np.cos(th))**2 +
                            ckx[i] * cky[i] * np.sin(2 * th)),
                    -ckx[i] * np.cos(th) - cky[i] * np.sin(th) +
                    np.sqrt(4 - (ckx[i] * np.sin(th))**2 -
                            (cky[i] * np.cos(th))**2 +
                            ckx[i] * cky[i] * np.sin(2 * th))))
            np.seterr(invalid=inv)
        if self.debug:
            plt.figure()
            plt.plot(th, kmaxth)

        krbig = sqrt(kxbig**2 + kybig**2)
        mask = (krbig < 2)
        mtot = mtot | mask
        wienerfilter[mask] = (
            wienerfilter[mask] +
            self._tf(krbig[mask])**2 * self._att(krbig[mask]))
        self.wienerfilter = wienerfilter

        if useCupy and 'interp' in dir(
                cp):  # interp not available in cupy version < 9.0.0
            kmax = cp.interp(cp.arctan2(cp.asarray(kybig), cp.asarray(kxbig)),
                             cp.asarray(th),
                             cp.asarray(kmaxth),
                             period=2 * pi).astype(np.single).get()
        else:
            kmax = np.interp(np.arctan2(kybig, kxbig),
                             th,
                             kmaxth,
                             period=2 * pi).astype(np.single)

        if self.debug:
            plt.figure()
            plt.title('WienerFilter')
            plt.imshow(wienerfilter)

        wienerfilter = mtot * (1 - krbig * mtot / kmax) / (
            wienerfilter * mtot + self.w**2)
        self._postfilter = fft.fftshift(wienerfilter)

        if self.cleanup:
            imgo = self.reconstruct_fftw(img)
            kernel = np.ones((5, 5), np.uint8)
            mask_tmp = abs(fft.fftshift(fft.fft2(imgo))) > (
                10 * gaussian_filter(abs(fft.fftshift(fft.fft2(imgo))), 5))
            mask = scipy.ndimage.morphology.binary_dilation(
                np.single(mask_tmp), kernel)
            mask[self.N - 12:self.N + 13, self.N - 12:self.N + 13] = np.full(
                (25, 25), False)
            mask_shift = (fft.fftshift(mask))
            self._postfilter[mask_shift.astype(bool)] = 0

        if opencv:
            self._reconfactorU = [
                cv2.UMat(self._reconfactor[idx_p, :, :])
                for idx_p in range(0, 7)
            ]
            self._prefilter_ocv = np.single(
                cv2.dft(fft.ifft2(self._prefilter).real))
            pf = np.zeros((self.N, self.N, 2), dtype=np.single)
            pf[:, :, 0] = self._prefilter
            pf[:, :, 1] = self._prefilter
            self._prefilter_ocvU = cv2.UMat(np.single(pf))
            self._postfilter_ocv = np.single(
                cv2.dft(fft.ifft2(self._postfilter).real))
            pf = np.zeros((2 * self.N, 2 * self.N, 2), dtype=np.single)
            pf[:, :, 0] = self._postfilter
            pf[:, :, 1] = self._postfilter
            self._postfilter_ocvU = cv2.UMat(np.single(pf))

        if cupy:
            self._postfilter_cp = cp.asarray(self._postfilter)
Ejemplo n.º 11
0
 def __call__(self, x):
     return xp.interp(xp.asarray(x), self.xx, self.yy)