Ejemplo n.º 1
0
def get_enrolled_children_data_chart(domain, config, loc_level, show_test=False):
    config['month'] = datetime(*config['month'])

    chart_data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        'month', 'age_tranche', '%s_name' % loc_level
    ).annotate(
        valid=Sum('valid_in_month'),
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    chart = OrderedDict()
    chart.update({'0-1 month': 0})
    chart.update({'1-6 months': 0})
    chart.update({'6-12 months': 0})
    chart.update({'1-3 years': 0})
    chart.update({'3-6 years': 0})

    all = 0
    best_worst = {}
    for row in chart_data:
        location = row['%s_name' % loc_level]

        if not row['age_tranche']:
            continue

        age = int(row['age_tranche'])
        valid = row['valid']
        all += valid
        chart[match_age(age)] += valid

        if location in best_worst:
            best_worst[location] += valid
        else:
            best_worst[location] = valid

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value,
                        'all': all
                    } for key, value in six.iteritems(chart)
                ],
                "key": "Children (0-6 years) who are enrolled",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.BLUE
            }
        ],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 2
0
 def get_data_for_deliveries(date, filters):
     queryset = AggCcsRecordMonthly.objects.filter(
         month=date, **filters
     ).values(
         'aggregation_level'
     ).annotate(
         institutional_delivery=Sum('institutional_delivery_in_month'),
         delivered=Sum('delivered_in_month')
     )
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 3
0
 def get_data_for_daily_usage(date, filters):
     queryset = AggAwcDailyView.objects.filter(
         date=date, **filters
     ).values(
         'aggregation_level'
     ).annotate(
         awcs=Sum('num_launched_awcs'),
         daily_attendance=Sum('daily_attendance_open')
     )
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggCcsRecordMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         valid=Sum('lactating'),
         all=Sum('lactating_all'),
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 5
0
 def get_data(date, filters):
     queryset = AggLsMonthly.objects.filter(
         month=date, **filters
     ).values(
         "aggregation_level",
         "awc_visits",
         "vhnd_observed",
         "beneficiary_vists",
         "num_launched_awcs",
     )
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 6
0
    def get_data_for(filters):
        queryset = AggAwcDailyView.objects.filter(
            **filters
        ).values(
            *group_by
        ).annotate(
            in_day=Sum('daily_attendance_open'),
            all=Sum('num_launched_awcs'),
        ).order_by('%s_name' % loc_level)

        if not show_test:
            queryset = apply_exclude(domain, queryset)
        return queryset
Ejemplo n.º 7
0
    def get_data_for(filters):
        filters['month'] = datetime(*filters['month'])
        queryset = AggAwcMonthly.objects.filter(
            **filters
        ).values(
            '%s_name' % loc_level, '%s_map_location_name' % loc_level
        ).annotate(
            household=Sum('cases_household'),
        ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
        if not show_test:
            queryset = apply_exclude(domain, queryset)

        return queryset
Ejemplo n.º 8
0
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggAwcMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         in_month=Sum('infra_infant_weighing_scale'),
         all=Sum('num_awc_infra_last_update'),
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 9
0
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggAwcMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         in_month=Sum(person_has_aadhaar_column(beta)),
         all=Sum(person_is_beneficiary_column(beta)),
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 10
0
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggAwcMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         valid=Sum('cases_person_adolescent_girls_11_14'),
         all=Sum('cases_person_adolescent_girls_11_14_all'),
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggCcsRecordMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         children=Sum('institutional_delivery_in_month'),
         all=Sum('delivered_in_month'),
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 12
0
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggChildHealthMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         valid=Sum('valid_in_month'),
         all=Sum('valid_all_registered_in_month')
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 13
0
    def get_data_for(filters):
        filters['month'] = datetime(*filters['month'])
        queryset = AggChildHealthMonthly.objects.filter(
            **filters
        ).values(
            '%s_name' % loc_level, '%s_map_location_name' % loc_level
        ).annotate(
            children=Sum('cf_initiation_in_month'),
            all=Sum('cf_initiation_eligible'),
        ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)

        if not show_test:
            queryset = apply_exclude(domain, queryset)
        return queryset
Ejemplo n.º 14
0
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggChildHealthMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         low_birth=Sum('low_birth_weight_in_month'),
         in_month=Sum('weighed_and_born_in_month'),
         all=Sum('born_in_month')
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 15
0
    def get_data_for(filters):
        filters['month'] = datetime(*filters['month'])
        queryset = AggAwcMonthly.objects.filter(
            **filters
        ).values(
            '%s_name' % loc_level, '%s_map_location_name' % loc_level
        ).annotate(
            states=Sum('num_launched_states') if level <= 1 else Max('num_launched_states'),
            districts=Sum('num_launched_districts') if level <= 2 else Max('num_launched_districts'),
            blocks=Sum('num_launched_blocks') if level <= 3 else Max('num_launched_blocks'),
            supervisors=Sum('num_launched_supervisors') if level <= 4 else Max('num_launched_supervisors'),
            awcs=Sum('num_launched_awcs') if level <= 5 else Max('num_launched_awcs'),
        ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)

        if not show_test:
            queryset = apply_exclude(domain, queryset)
        return queryset
Ejemplo n.º 16
0
    def get_data_for(month, filters):
        queryset = AggAwcMonthly.objects.filter(
            month=month, **filters
        ).values(
            'aggregation_level'
        ).annotate(
            clean_water=Sum('infra_clean_water'),
            functional_toilet=Sum('infra_functional_toilet'),
            medicine_kits=Sum('infra_medicine_kits'),
            infant_scale=Sum('infra_infant_weighing_scale'),
            adult_scale=Sum('infra_adult_weighing_scale'),
            sum_last_update=Sum('num_awc_infra_last_update')
        )

        if not show_test:
            queryset = apply_exclude(domain, queryset)
        return queryset
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggChildHealthMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         moderately_underweight=Sum('nutrition_status_moderately_underweight'),
         severely_underweight=Sum('nutrition_status_severely_underweight'),
         normal=Sum('nutrition_status_normal'),
         weighed=Sum('nutrition_status_weighed'),
         total=Sum('wer_eligible'),
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     if 'age_tranche' not in config:
         queryset = queryset.exclude(age_tranche=72)
     return queryset
Ejemplo n.º 18
0
 def get_data_for(filters):
     filters['month'] = datetime(*filters['month'])
     queryset = AggChildHealthMonthly.objects.filter(
         **filters
     ).values(
         '%s_name' % loc_level, '%s_map_location_name' % loc_level
     ).annotate(
         moderate=Sum(stunting_moderate_column(icds_feature_flag)),
         severe=Sum(stunting_severe_column(icds_feature_flag)),
         normal=Sum(stunting_normal_column(icds_feature_flag)),
         total=Sum('height_eligible'),
         total_measured=Sum(hfa_recorded_in_month_column(icds_feature_flag)),
     ).order_by('%s_name' % loc_level, '%s_map_location_name' % loc_level)
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     if 'age_tranche' not in config:
         queryset = queryset.exclude(age_tranche=72)
     return queryset
Ejemplo n.º 19
0
 def get_data_for_awc_monthly(month, filters):
     level = filters['aggregation_level']
     queryset = AggAwcMonthly.objects.filter(
         month=month, **filters
     ).values(
         'aggregation_level'
     ).annotate(
         states=Sum('num_launched_states') if level <= 1 else Max('num_launched_states'),
         districts=Sum('num_launched_districts') if level <= 2 else Max('num_launched_districts'),
         blocks=Sum('num_launched_blocks') if level <= 3 else Max('num_launched_blocks'),
         supervisors=Sum('num_launched_supervisors') if level <= 4 else Max('num_launched_supervisors'),
         awc_num_open=Sum('awc_num_open') if level <= 5 else Max('awc_num_open'),
         awcs=Sum('num_launched_awcs') if level <= 5 else Max('num_launched_awcs'),
         all_awcs=Sum('num_awcs') if level <= 5 else Max('num_awcs')
     )
     if not show_test:
         queryset = apply_exclude(domain, queryset)
     return queryset
Ejemplo n.º 20
0
    def get_data_for(query_class, filters):
        queryset = query_class.objects.filter(
            **filters
        ).values(
            'aggregation_level'
        ).annotate(
            household=Sum('cases_household'),
            child_health=Sum('cases_child_health'),
            child_health_all=Sum('cases_child_health_all'),
            ccs_pregnant=Sum('cases_ccs_pregnant'),
            ccs_pregnant_all=Sum('cases_ccs_pregnant_all'),
            css_lactating=Sum('cases_ccs_lactating'),
            css_lactating_all=Sum('cases_ccs_lactating_all'),
            person_adolescent=Sum('cases_person_adolescent_girls_11_14'),
            person_adolescent_all=Sum('cases_person_adolescent_girls_11_14_all'),
            person_aadhaar=Sum(person_has_aadhaar_column(beta)),
            all_persons=Sum(person_is_beneficiary_column(beta))
        )

        if not show_test:
            queryset = apply_exclude(domain, queryset)
        return queryset
Ejemplo n.º 21
0
def get_prevalence_of_stunting_sector_data(domain,
                                           config,
                                           loc_level,
                                           location_id,
                                           show_test=False,
                                           icds_feature_flag=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(**config).values(
        *group_by).annotate(
            moderate=Sum(stunting_moderate_column(icds_feature_flag)),
            severe=Sum(stunting_severe_column(icds_feature_flag)),
            normal=Sum(stunting_normal_column(icds_feature_flag)),
            total=Sum('height_eligible'),
            total_measured=Sum(
                hfa_recorded_in_month_column(icds_feature_flag)),
        ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)
    if 'age_tranche' not in config:
        data = data.filter(age_tranche__lt=72)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'severe': 0,
        'moderate': 0,
        'total': 0,
        'normal': 0,
        'total_measured': 0
    })
    if icds_feature_flag:
        location_launched_status = get_location_launched_status(
            config, loc_level)
    else:
        location_launched_status = None
    for row in data:
        if location_launched_status:
            launched_status = location_launched_status.get(row['%s_name' %
                                                               loc_level])
            if launched_status is None or launched_status <= 0:
                continue
        total = row['total'] or 0
        name = row['%s_name' % loc_level]

        severe = row['severe'] or 0
        moderate = row['moderate'] or 0
        normal = row['normal'] or 0
        total_measured = row['total_measured'] or 0

        row_values = {
            'severe': severe,
            'moderate': moderate,
            'total': total,
            'normal': normal,
            'total_measured': total_measured,
        }

        for prop, value in row_values.items():
            tooltips_data[name][prop] += value

        value = (moderate + severe) / float(total_measured or 1)
        chart_data['blue'].append([name, value])

    chart_data['blue'] = sorted(chart_data['blue'])

    __, __, chosen_filters = chosen_filters_to_labels(
        config, default_interval=default_age_interval(icds_feature_flag))

    return {
        "tooltips_data":
        dict(tooltips_data),
        "info":
        _(("Of the children enrolled for Anganwadi services, whose height was measured, the percentage "
           "of children between {} who were moderately/severely stunted in the current month. "
           "<br/><br/>"
           "Stunting is a sign of chronic undernutrition and has long lasting harmful consequences on "
           "the growth of a child".format(chosen_filters))),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
def get_registered_household_data_chart(domain,
                                        config,
                                        loc_level,
                                        show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggAwcMonthly.objects.filter(**config).values(
        'month', '%s_name' % loc_level).annotate(
            household=Sum('cases_household'), ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {'blue': OrderedDict()}

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0}

    best_worst = {}
    for row in chart_data:
        date = row['month']
        household = (row['household'] or 0)
        location = row['%s_name' % loc_level]

        if date.month == (month - relativedelta(months=1)).month:
            if location in best_worst:
                best_worst[location].append(household)
            else:
                best_worst[location] = [household]

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['blue'][date_in_miliseconds]['y'] += household

    top_locations = sorted([
        dict(loc_name=key, value=sum(value) / len(value))
        for key, value in best_worst.iteritems()
    ],
                           key=lambda x: x['value'],
                           reverse=True)

    return {
        "chart_data": [{
            "values": [{
                'x': key,
                'y': value['y'] / float(value['all'] or 1),
                'all': value['all']
            } for key, value in data['blue'].iteritems()],
            "key":
            "Registered Households",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            BLUE
        }],
        "all_locations":
        top_locations,
        "top_five":
        top_locations[:5],
        "bottom_five":
        top_locations[-5:],
        "location_type":
        loc_level.title()
        if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 23
0
    def get_excel_data(self):
        def _format_report_data(column, value, is_launched):
            location_names = ['state_name', 'district_name', 'block_name', 'supervisor_name', 'awc_name',
                              'awc_site_code']
            AWC_NOT_LAUNCHED = 'AWC Not Launched'
            if column in location_names:
                return value
            elif not is_launched:
                return AWC_NOT_LAUNCHED
            else:
                return value if value is not None else DATA_NOT_ENTERED

        filters = {"month": self.month, "aggregation_level": 5}

        if self.loc_level == 4:
            filters['supervisor_id'] = self.location
            order_by = ('awc_name',)
        elif self.loc_level == 3:
            filters['block_id'] = self.location
            order_by = ('supervisor_name', 'awc_name')
        elif self.loc_level == 2:
            filters['district_id'] = self.location
            order_by = ('block_name', 'supervisor_name', 'awc_name')
        elif self.loc_level == 1:
            filters['state_id'] = self.location
            order_by = ('district_name', 'block_name', 'supervisor_name', 'awc_name')
        else:
            order_by = ('state_name', 'district_name', 'block_name', 'supervisor_name', 'awc_name')

        if self.report_type == THR_REPORT_BENEFICIARY_TYPE:
            headers, data = self.get_beneficiary_wise_data(filters, order_by)
        elif self.report_type == THR_REPORT_DAY_BENEFICIARY_TYPE:
            headers, data = self.get_beneficiary_and_days_wise_data(filters, order_by)
        else:
            headers, data = self.get_consolidated_data(filters, order_by)

        #Exclude test states
        data = apply_exclude(self.domain, data)
        excel_rows = [headers]

        for row in data:
            awc_is_launched = row.get('is_launched') == 'yes' or row.get('num_launched_awcs') == 1
            row_data = [_format_report_data(column_name, col_values, awc_is_launched)
                        for column_name, col_values in row.items() if column_name not in ('num_launched_awcs',
                                                                                          'is_launched')]
            excel_rows.append(row_data)
        filters = [['Generated at', india_now()]]
        if self.location:
            locs = SQLLocation.objects.get(location_id=self.location).get_ancestors(include_self=True)
            for loc in locs:
                filters.append([loc.location_type.name.title(), loc.name])
        else:
            filters.append(['Location', 'National'])

        date = self.month
        filters.append(['Month', date.strftime("%B")])
        filters.append(['Year', date.year])

        return [
            [
                self.title,
                excel_rows
            ],
            [
                'Export Info',
                filters
            ]
        ]
def get_functional_toilet_sector_data(domain, config, loc_level, location_id, show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggAwcMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        in_month=Sum('infra_functional_toilet'),
        all=Sum('num_awc_infra_last_update'),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'in_month': 0,
        'all': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        valid = row['all']
        name = row['%s_name' % loc_level]
        result_set.add(name)

        in_month = row['in_month']

        row_values = {
            'in_month': in_month or 0,
            'all': valid or 0
        }

        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        value = (in_month or 0) / float(valid or 1)
        chart_data['blue'].append([
            name, value
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data": dict(tooltips_data),
        "info": _((
            "Of the AWCs that submitted an Infrastructure Details form, the percentage of AWCs "
            "that reported having a functional toilet"
        )),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
def get_functional_toilet_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggAwcMonthly.objects.filter(
        **config
    ).values(
        'month', '%s_name' % loc_level
    ).annotate(
        in_month=Sum('infra_functional_toilet'),
        all=Sum('num_awc_infra_last_update'),
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'blue': OrderedDict(),
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0, 'in_month': 0}

    best_worst = defaultdict(lambda: {
        'in_month': 0,
        'all': 0
    })
    for row in chart_data:
        date = row['month']
        in_month = (row['in_month'] or 0)
        location = row['%s_name' % loc_level]
        valid = row['all']

        best_worst[location]['in_month'] = in_month
        best_worst[location]['all'] = (valid or 0)

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['blue'][date_in_miliseconds]['all'] += (valid or 0)
        data['blue'][date_in_miliseconds]['in_month'] += in_month

    top_locations = sorted(
        [
            dict(
                loc_name=key,
                percent=(value['in_month'] * 100) / float(value['all'] or 1)
            ) for key, value in six.iteritems(best_worst)
        ],
        key=lambda x: x['percent'],
        reverse=True
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['in_month'] / float(value['all'] or 1),
                        'in_month': value['in_month']
                    } for key, value in six.iteritems(data['blue'])
                ],
                "key": "Percentage of AWCs that reported having a functional toilet",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.BLUE
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
def get_institutional_deliveries_sector_data(domain,
                                             config,
                                             loc_level,
                                             location_id,
                                             show_test=False,
                                             icds_features_flag=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggCcsRecordMonthly.objects.filter(**config).values(
        *group_by).annotate(
            in_month=Sum('institutional_delivery_in_month'),
            eligible=Sum('delivered_in_month'),
        ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {'children': 0, 'all': 0})

    if icds_features_flag:
        location_launched_status = get_location_launched_status(
            config, loc_level)
    else:
        location_launched_status = None
    for row in data:
        if location_launched_status:
            launched_status = location_launched_status.get(row['%s_name' %
                                                               loc_level])
            if launched_status is None or launched_status <= 0:
                continue
        valid = row['eligible']
        name = row['%s_name' % loc_level]

        in_month = row['in_month']

        row_values = {'children': in_month or 0, 'all': valid or 0}
        for prop, value in row_values.items():
            tooltips_data[name][prop] += value

        value = (in_month or 0) / float(valid or 1)
        chart_data['blue'].append([name, value])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data":
        dict(tooltips_data),
        "info":
        institutional_deliveries_help_text(html=True),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
Ejemplo n.º 27
0
def get_awcs_covered_sector_data(domain,
                                 config,
                                 loc_level,
                                 location_id,
                                 show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])

    level = config['aggregation_level']
    data = AggAwcMonthly.objects.filter(**config).values(*group_by).annotate(
        states=Sum('num_launched_states')
        if level <= 1 else Max('num_launched_states'),
        districts=Sum('num_launched_districts')
        if level <= 2 else Max('num_launched_districts'),
        blocks=Sum('num_launched_blocks')
        if level <= 3 else Max('num_launched_blocks'),
        supervisors=Sum('num_launched_supervisors')
        if level <= 4 else Max('num_launched_supervisors'),
        awcs=Sum('num_launched_awcs')
        if level <= 5 else Max('num_launched_awcs'),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'districts': 0,
        'blocks': 0,
        'states': 0,
        'supervisors': 0,
        'awcs': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        name = row['%s_name' % loc_level]
        awcs = row['awcs'] or 0
        supervisors = row['supervisors'] or 0
        blocks = row['blocks'] or 0
        districts = row['districts'] or 0
        states = row['states'] or 0
        result_set.add(name)

        row_values = {
            'awcs': awcs,
            'supervisors': supervisors,
            'blocks': blocks,
            'districts': districts,
            'states': states,
        }
        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += (value or 0)

    for name, value_dict in six.iteritems(tooltips_data):
        chart_data['blue'].append([name, value_dict['awcs']])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    if level == 1:
        prop = 'states'
    elif level == 2:
        prop = 'districts'
    elif level == 3:
        prop = 'blocks'
    elif level == 4:
        prop = 'supervisors'
    else:
        prop = 'awcs'

    total_awcs = sum([(x['awcs'] or 0) for x in six.itervalues(tooltips_data)])
    total = sum([(x[prop] or 0) for x in six.itervalues(tooltips_data)])

    info = _("Total AWCs that have launched ICDS CAS <br />" +
             "Number of AWCs launched: %d" % total_awcs)
    if level != 5:
        info = _("Total AWCs that have launched ICDS CAS <br />" +
                 "Number of AWCs launched: %d <br />" % total_awcs +
                 "Number of %s launched: %d" % (prop.title(), total))

    return {
        "tooltips_data":
        dict(tooltips_data),
        "format":
        "number",
        "info":
        info,
        "chart_data": [{
            "values": chart_data['blue'],
            "key": "",
            "strokeWidth": 2,
            "classed": "dashed",
            "color": MapColors.BLUE
        }]
    }
Ejemplo n.º 28
0
def get_newborn_with_low_birth_weight_data(domain,
                                           config,
                                           loc_level,
                                           location_id,
                                           show_test=False,
                                           icds_features_flag=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(**config).values(
        *group_by).annotate(low_birth=Sum('low_birth_weight_in_month'),
                            in_month=Sum('weighed_and_born_in_month'),
                            all=Sum('born_in_month')).order_by('%s_name' %
                                                               loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'in_month': 0,
        'low_birth': 0,
        'all': 0
    })
    if icds_features_flag:
        location_launched_status = get_location_launched_status(
            config, loc_level)
    else:
        location_launched_status = None
    for row in data:
        if location_launched_status:
            launched_status = location_launched_status.get(row['%s_name' %
                                                               loc_level])
            if launched_status is None or launched_status <= 0:
                continue
        in_month = row['in_month'] or 0
        name = row['%s_name' % loc_level]

        all_records = row['all'] or 0
        low_birth = row['low_birth'] or 0

        value = low_birth / float(in_month or 1)

        tooltips_data[name]['low_birth'] += low_birth
        tooltips_data[name]['in_month'] += in_month
        tooltips_data[name]['all'] += all_records

        chart_data['blue'].append([name, value])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data":
        dict(tooltips_data),
        "info":
        _((new_born_with_low_weight_help_text(html=True))),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
Ejemplo n.º 29
0
def get_newborn_with_low_birth_weight_chart(domain,
                                            config,
                                            loc_level,
                                            show_test=False,
                                            icds_features_flag=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggChildHealthMonthly.objects.filter(**config).values(
        'month', '%s_name' % loc_level).annotate(
            low_birth=Sum('low_birth_weight_in_month'),
            in_month=Sum('weighed_and_born_in_month'),
            all=Sum('born_in_month')).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {'blue': OrderedDict()}

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {
            'y': 0,
            'in_month': 0,
            'low_birth': 0,
            'all': 0
        }

    best_worst = {}
    if icds_features_flag:
        if 'month' not in config:
            config['month'] = month
        location_launched_status = get_location_launched_status(
            config, loc_level)
    else:
        location_launched_status = None
    for row in chart_data:
        if location_launched_status:
            launched_status = location_launched_status.get(row['%s_name' %
                                                               loc_level])
            if launched_status is None or launched_status <= 0:
                continue
        date = row['month']
        in_month = row['in_month'] or 0
        location = row['%s_name' % loc_level]
        low_birth = row['low_birth'] or 0
        all_birth = row['all'] or 0

        best_worst[location] = low_birth * 100 / float(in_month or 1)

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data_for_month = data['blue'][date_in_miliseconds]
        data_for_month['low_birth'] += low_birth
        data_for_month['in_month'] += in_month
        data_for_month['all'] += all_birth
        data_for_month['y'] = data_for_month['low_birth'] / float(
            data_for_month['in_month'] or 1)

    all_locations = [{
        'loc_name': key,
        'percent': val
    } for key, val in best_worst.items()]
    all_locations_sorted_by_name = sorted(all_locations,
                                          key=lambda x: x['loc_name'])
    all_locations_sorted_by_percent_and_name = sorted(
        all_locations_sorted_by_name, key=lambda x: x['percent'])

    return {
        "chart_data": [{
            "values": [{
                'x': key,
                'y': val['y'],
                'in_month': val['in_month'],
                'low_birth': val['low_birth'],
                'all': val['all']
            } for key, val in data['blue'].items()],
            "key":
            "% Newborns with Low Birth Weight",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ChartColors.BLUE
        }],
        "all_locations":
        all_locations_sorted_by_percent_and_name,
        "top_five":
        all_locations_sorted_by_percent_and_name[:5],
        "bottom_five":
        all_locations_sorted_by_percent_and_name[-5:],
        "location_type":
        loc_level.title()
        if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
def get_immunization_coverage_sector_data(domain, config, loc_level, location_id, show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        in_month=Sum('fully_immunized_on_time') + Sum('fully_immunized_late'),
        eligible=Sum('fully_immunized_eligible'),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'children': 0,
        'all': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        valid = row['eligible']
        name = row['%s_name' % loc_level]
        result_set.add(name)

        in_month = row['in_month']

        row_values = {
            'children': in_month or 0,
            'all': valid or 0
        }
        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        value = (in_month or 0) / float(valid or 1)
        chart_data['blue'].append([
            name, value
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data": dict(tooltips_data),
        "info": _((
            "Of the total number of children enrolled for Anganwadi Services who are over a year old, the "
            "percentage of children who have received the complete immunization as per the National Immunization "
            "Schedule of India that is required by age 1."
            "<br/><br/>"
            "This includes the following immunizations:<br/>"
            "If Pentavalent path: Penta1/2/3, OPV1/2/3, BCG, Measles, VitA1<br/>"
            "If DPT/HepB path: DPT1/2/3, HepB1/2/3, OPV1/2/3, BCG, Measles, VitA1"
        )),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            }
        ]
    }
Ejemplo n.º 31
0
def get_prevalence_of_severe_sector_data(domain, config, loc_level, location_id, show_test=False,
                                         icds_feature_flag=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        moderate=Sum(wasting_moderate_column(icds_feature_flag)),
        severe=Sum(wasting_severe_column(icds_feature_flag)),
        normal=Sum(wasting_normal_column(icds_feature_flag)),
        total_height_eligible=Sum('height_eligible'),
        total_weighed=Sum('nutrition_status_weighed'),
        total_measured=Sum(wfh_recorded_in_month_column(icds_feature_flag)),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)
    if 'age_tranche' not in config:
        if icds_feature_flag:
            data = data.exclude(age_tranche=72)
        else:
            data = data.exclude(age_tranche__in=[0, 6, 72])

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'severe': 0,
        'moderate': 0,
        'total_height_eligible': 0,
        'normal': 0,
        'total_weighed': 0,
        'total_measured': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        total_weighed = row['total_weighed'] or 0
        name = row['%s_name' % loc_level]
        result_set.add(name)

        severe = row['severe'] or 0
        moderate = row['moderate'] or 0
        normal = row['normal'] or 0
        total_measured = row['total_measured'] or 0
        total_height_eligible = row['total_height_eligible'] or 0

        tooltips_data[name]['severe'] += severe
        tooltips_data[name]['moderate'] += moderate
        tooltips_data[name]['total_weighed'] += total_weighed
        tooltips_data[name]['normal'] += normal
        tooltips_data[name]['total_measured'] += total_measured
        tooltips_data[name]['total_height_eligible'] += total_height_eligible

        value = (moderate + severe) / float(total_weighed or 1)
        chart_data['blue'].append([
            name, value
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data": dict(tooltips_data),
        "info": _(wasting_help_text(icds_feature_flag)),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
Ejemplo n.º 32
0
def get_adult_weight_scale_sector_data(domain, config, loc_level, location_id, show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggAwcMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        in_month=Sum('infra_adult_weighing_scale'),
        all=Sum('num_awc_infra_last_update'),
    ).order_by('%s_name' % loc_level)
    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'in_month': 0,
        'all': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        valid = row['all']
        name = row['%s_name' % loc_level]
        result_set.add(name)

        in_month = row['in_month']
        row_values = {
            'in_month': in_month or 0,
            'all': valid or 0
        }

        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        value = (in_month or 0) / float(valid or 1)

        chart_data['blue'].append([
            name, value
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data": dict(tooltips_data),
        "info": awcs_reported_weighing_scale_mother_and_child_help_text(),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            }
        ]
    }
Ejemplo n.º 33
0
def get_awcs_covered_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    level = config['aggregation_level']
    chart_data = AggAwcMonthly.objects.filter(**config).values(
        'month', '%s_name' % loc_level).annotate(
            awcs=Sum('num_launched_awcs')
            if level <= 5 else Max('num_launched_awcs'), ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {'pink': OrderedDict()}

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['pink'][miliseconds] = {'y': 0, 'all': 0}

    best_worst = {}
    for row in chart_data:
        date = row['month']
        awcs = (row['awcs'] or 0)
        location = row['%s_name' % loc_level]

        if date.month == month.month:
            if location in best_worst:
                best_worst[location].append(awcs)
            else:
                best_worst[location] = [awcs]

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['pink'][date_in_miliseconds]['y'] += awcs

    top_locations = sorted([
        dict(loc_name=key, value=sum(value) / len(value))
        for key, value in six.iteritems(best_worst)
    ],
                           key=lambda x: x['value'],
                           reverse=True)

    return {
        "chart_data": [{
            "values": [{
                'x': key,
                'y': value['y'] / float(value['all'] or 1),
                'all': value['all']
            } for key, value in six.iteritems(data['pink'])],
            "key":
            "Number of AWCs Launched",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ChartColors.PINK
        }],
        "all_locations":
        top_locations,
        "top_five":
        top_locations[:5],
        "bottom_five":
        top_locations[-5:],
        "location_type":
        loc_level.title()
        if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
def get_prevalence_of_severe_sector_data(domain, config, loc_level, location_id, show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        moderate=Sum('wasting_moderate'),
        severe=Sum('wasting_severe'),
        valid=Sum('height_eligible'),
        normal=Sum('wasting_normal'),
        total_measured=Sum('weighed_and_height_measured_in_month'),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)
    if 'age_tranche' not in config:
        data = data.exclude(age_tranche__in=[0, 6, 72])

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'severe': 0,
        'moderate': 0,
        'total': 0,
        'normal': 0,
        'total_measured': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        valid = row['valid']
        name = row['%s_name' % loc_level]
        result_set.add(name)

        severe = row['severe']
        moderate = row['moderate']
        normal = row['normal']
        total_measured = row['total_measured']

        tooltips_data[name]['severe'] += (severe or 0)
        tooltips_data[name]['moderate'] += (moderate or 0)
        tooltips_data[name]['total'] += (valid or 0)
        tooltips_data[name]['normal'] += normal
        tooltips_data[name]['total_measured'] += total_measured

        value = ((moderate or 0) + (severe or 0)) / float(valid or 1)
        chart_data['blue'].append([
            name, value
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data": dict(tooltips_data),
        "info": _((
            "Percentage of children between 6 - 60 months enrolled for ICDS services with "
            "weight-for-height below -3 standard deviations of the WHO Child Growth Standards median."
            "<br/><br/>"
            "Severe Acute Malnutrition (SAM) or wasting in children is a symptom of acute "
            "undernutrition usually as a consequence of insufficient food intake or a high "
            "incidence of infectious diseases."
        )),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
Ejemplo n.º 35
0
def get_prevalence_of_stunting_data_chart(domain,
                                          config,
                                          loc_level,
                                          show_test=False,
                                          icds_feature_flag=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']
    # using child health monthly while querying for sector level due to performance issues
    if icds_feature_flag and config[
            'aggregation_level'] >= AggregationLevels.SUPERVISOR:
        chm_filter = get_filters_from_config_for_chart_view(config)
        chm_queryset = ChildHealthMonthlyView.objects.filter(**chm_filter)
    else:
        chm_queryset = AggChildHealthMonthly.objects.filter(**config)

    chart_data = chm_queryset.values('month', '%s_name' % loc_level).annotate(
        moderate=Sum(stunting_moderate_column(icds_feature_flag)),
        severe=Sum(stunting_severe_column(icds_feature_flag)),
        normal=Sum(stunting_normal_column(icds_feature_flag)),
        total=Sum('height_eligible'),
        measured=Sum(hfa_recorded_in_month_column(icds_feature_flag)),
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    if 'age_tranche' not in config:
        chart_data = chart_data.filter(age_tranche__lt=72)

    data = {
        'red': OrderedDict(),
        'orange': OrderedDict(),
        'peach': OrderedDict()
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['red'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}
        data['orange'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}
        data['peach'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}

    best_worst = {}
    if icds_feature_flag:
        if 'month' not in config:
            config['month'] = month
        location_launched_status = get_location_launched_status(
            config, loc_level)
    else:
        location_launched_status = None

    for row in chart_data:
        if location_launched_status:
            launched_status = location_launched_status.get(row['%s_name' %
                                                               loc_level])
            if launched_status is None or launched_status <= 0:
                continue

        date = row['month']
        total = row['total'] or 0
        measured = row['measured'] or 0
        location = row['%s_name' % loc_level]
        severe = row['severe'] or 0
        moderate = row['moderate'] or 0
        normal = row['normal'] or 0

        underweight = moderate + severe

        best_worst[location] = underweight * 100 / float(measured or 1)

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['peach'][date_in_miliseconds]['y'] += normal
        data['peach'][date_in_miliseconds]['measured'] += measured
        data['peach'][date_in_miliseconds]['all'] += total
        data['orange'][date_in_miliseconds]['y'] += moderate
        data['orange'][date_in_miliseconds]['measured'] += measured
        data['orange'][date_in_miliseconds]['all'] += total
        data['red'][date_in_miliseconds]['y'] += severe
        data['red'][date_in_miliseconds]['measured'] += measured
        data['red'][date_in_miliseconds]['all'] += total

    top_locations = sorted([
        dict(loc_name=key, percent=value) for key, value in best_worst.items()
    ],
                           key=lambda x: (x['percent'], x['loc_name']))

    return {
        "chart_data": [{
            "values": [{
                'x': key,
                'y': value['y'] / float(value['measured'] or 1),
                'all': value['all'],
                'measured': value['measured']
            } for key, value in data['peach'].items()],
            "key":
            "% normal",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ChartColors.PINK
        }, {
            "values": [{
                'x': key,
                'y': value['y'] / float(value['measured'] or 1),
                'all': value['all'],
                'measured': value['measured']
            } for key, value in data['orange'].items()],
            "key":
            "% moderately stunted",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ChartColors.ORANGE
        }, {
            "values": [{
                'x': key,
                'y': value['y'] / float(value['measured'] or 1),
                'all': value['all'],
                'measured': value['measured']
            } for key, value in data['red'].items()],
            "key":
            "% severely stunted",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ChartColors.RED
        }],
        "all_locations":
        top_locations,
        "top_five":
        top_locations[:5],
        "bottom_five":
        top_locations[-5:],
        "location_type":
        loc_level.title()
        if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 36
0
def get_early_initiation_breastfeeding_data(domain,
                                            config,
                                            loc_level,
                                            show_test=False):
    group_by = ['%s_name' % loc_level]
    if loc_level == LocationTypes.SUPERVISOR:
        config['aggregation_level'] += 1
        group_by.append('%s_name' % LocationTypes.AWC)

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(**config).values(
        *group_by).annotate(
            birth=Sum('bf_at_birth'),
            in_month=Sum('born_in_month'),
        ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    loc_data = {'green': 0, 'orange': 0, 'red': 0}
    tmp_name = ''
    rows_for_location = 0

    chart_data = {'green': [], 'orange': [], 'red': []}

    tooltips_data = defaultdict(lambda: {
        'in_month': 0,
        'birth': 0,
    })

    for row in data:
        in_month = row['in_month']
        name = row['%s_name' % loc_level]

        if tmp_name and name != tmp_name:
            chart_data['green'].append([
                tmp_name, (loc_data['green'] / float(rows_for_location or 1))
            ])
            chart_data['orange'].append([
                tmp_name, (loc_data['orange'] / float(rows_for_location or 1))
            ])
            chart_data['red'].append(
                [tmp_name, (loc_data['red'] / float(rows_for_location or 1))])
            rows_for_location = 0
            loc_data = {'green': 0, 'orange': 0, 'red': 0}

        birth = row['birth']

        value = (birth or 0) * 100 / float(in_month or 1)

        tooltips_data[name]['birth'] += birth
        tooltips_data[name]['in_month'] += (in_month or 0)

        if value >= 60.0:
            loc_data['green'] += 1
        elif 20.0 <= value < 60.0:
            loc_data['orange'] += 1
        elif value < 20.0:
            loc_data['red'] += 1

        tmp_name = name
        rows_for_location += 1

    chart_data['green'].append(
        [tmp_name, (loc_data['green'] / float(rows_for_location or 1))])
    chart_data['orange'].append(
        [tmp_name, (loc_data['orange'] / float(rows_for_location or 1))])
    chart_data['red'].append(
        [tmp_name, (loc_data['red'] / float(rows_for_location or 1))])

    return {
        "tooltips_data":
        tooltips_data,
        "chart_data": [{
            "values": chart_data['red'],
            "key": "0%-20%",
            "strokeWidth": 2,
            "classed": "dashed",
            "color": RED
        }, {
            "values": chart_data['orange'],
            "key": "20%-60%",
            "strokeWidth": 2,
            "classed": "dashed",
            "color": ORANGE
        }, {
            "values": chart_data['green'],
            "key": "60%-100%",
            "strokeWidth": 2,
            "classed": "dashed",
            "color": PINK
        }]
    }
def get_immunization_coverage_sector_data(domain,
                                          config,
                                          loc_level,
                                          location_id,
                                          show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(**config).values(
        *group_by).annotate(
            in_month=Sum('fully_immunized_on_time') +
            Sum('fully_immunized_late'),
            eligible=Sum('fully_immunized_eligible'),
        ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {'children': 0, 'all': 0})

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        valid = row['eligible']
        name = row['%s_name' % loc_level]
        result_set.add(name)

        in_month = row['in_month']

        row_values = {'children': in_month or 0, 'all': valid or 0}
        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        value = (in_month or 0) / float(valid or 1)
        chart_data['blue'].append([name, value])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data":
        dict(tooltips_data),
        "info":
        _(("Of the total number of children enrolled for Anganwadi Services who are over a year old, the "
           "percentage of children who have received the complete immunization as per the National Immunization "
           "Schedule of India that is required by age 1."
           "<br/><br/>"
           "This includes the following immunizations:<br/>"
           "If Pentavalent path: Penta1/2/3, OPV1/2/3, BCG, Measles, VitA1<br/>"
           "If DPT/HepB path: DPT1/2/3, HepB1/2/3, OPV1/2/3, BCG, Measles, VitA1"
           )),
        "chart_data": [{
            "values": chart_data['blue'],
            "key": "",
            "strokeWidth": 2,
            "classed": "dashed",
            "color": MapColors.BLUE
        }]
    }
def get_institutional_deliveries_data_chart(domain,
                                            config,
                                            loc_level,
                                            show_test=False,
                                            icds_features_flag=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggCcsRecordMonthly.objects.filter(**config).values(
        'month', '%s_name' % loc_level).annotate(
            in_month=Sum('institutional_delivery_in_month'),
            eligible=Sum('delivered_in_month'),
        ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'blue': OrderedDict(),
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0, 'in_month': 0}

    best_worst = defaultdict(lambda: {'in_month': 0, 'all': 0})
    if icds_features_flag:
        if 'month' not in config:
            config['month'] = month
        location_launched_status = get_location_launched_status(
            config, loc_level)
    else:
        location_launched_status = None
    for row in chart_data:
        if location_launched_status:
            launched_status = location_launched_status.get(row['%s_name' %
                                                               loc_level])
            if launched_status is None or launched_status <= 0:
                continue
        date = row['month']
        in_month = row['in_month']
        location = row['%s_name' % loc_level]
        valid = row['eligible']

        best_worst[location]['in_month'] = in_month
        best_worst[location]['all'] = (valid or 0)

        date_in_miliseconds = int(date.strftime("%s")) * 1000
        data_for_month = data['blue'][date_in_miliseconds]

        data_for_month['all'] += valid
        data_for_month['in_month'] += in_month
        data_for_month['y'] = data_for_month['in_month'] / float(
            data_for_month['all'] or 1)

    all_locations = [{
        'loc_name':
        key,
        'percent': (value['in_month'] * 100) / float(value['all'] or 1)
    } for key, value in best_worst.items()]
    all_locations_sorted_by_name = sorted(all_locations,
                                          key=lambda x: x['loc_name'])
    all_locations_sorted_by_percent_and_name = sorted(
        all_locations_sorted_by_name, key=lambda x: x['percent'], reverse=True)

    return {
        "chart_data": [{
            "values": [{
                'x': key,
                'y': value['y'],
                'all': value['all'],
                'in_month': value['in_month']
            } for key, value in data['blue'].items()],
            "key":
            "% Institutional deliveries",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ChartColors.BLUE
        }],
        "all_locations":
        all_locations_sorted_by_percent_and_name,
        "top_five":
        all_locations_sorted_by_percent_and_name[:5],
        "bottom_five":
        all_locations_sorted_by_percent_and_name[-5:],
        "location_type":
        loc_level.title()
        if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 39
0
def get_institutional_deliveries_sector_data(domain,
                                             config,
                                             loc_level,
                                             location_id,
                                             show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggCcsRecordMonthly.objects.filter(**config).values(
        *group_by).annotate(
            in_month=Sum('institutional_delivery_in_month'),
            eligible=Sum('delivered_in_month'),
        ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {'children': 0, 'all': 0})

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        valid = row['eligible']
        name = row['%s_name' % loc_level]
        result_set.add(name)

        in_month = row['in_month']

        row_values = {'children': in_month or 0, 'all': valid or 0}
        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        value = (in_month or 0) / float(valid or 1)
        chart_data['blue'].append([name, value])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data":
        dict(tooltips_data),
        "info":
        _(("Percentage of pregnant women who delivered in a public or private medical facility "
           "in the last month. "
           "<br/><br/>"
           "Delivery in medical instituitions is associated with a decrease in maternal mortality rate"
           )),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
Ejemplo n.º 40
0
def get_service_delivery_report_data(domain,
                                     start,
                                     length,
                                     order,
                                     reversed_order,
                                     location_filters,
                                     year,
                                     month,
                                     step,
                                     include_test=False):
    if location_filters.get('aggregation_level') == 1:
        default_order = 'state_name'
    elif location_filters.get('aggregation_level') == 2:
        default_order = 'district_name'
    elif location_filters.get('aggregation_level') == 3:
        default_order = 'block_name'
    elif location_filters.get('aggregation_level') == 4:
        default_order = 'supervisor_name'
    else:
        default_order = 'awc_name'

    location_fields = [
        'state_name', 'district_name', 'block_name', 'supervisor_name',
        'awc_name'
    ]
    value_fields = location_fields + [
        'num_launched_awcs', 'valid_visits', 'expected_visits', 'gm_0_3',
        'children_0_3', 'num_awcs_conducted_cbe', 'num_awcs_conducted_vhnd',
        'thr_21_days', 'thr_25_days', 'thr_eligible', 'lunch_21_days',
        'lunch_25_days', 'pse_eligible', 'pse_21_days', 'pse_25_days',
        'gm_3_5', 'children_3_5', 'vhnd_conducted'
    ]
    data = ServiceDeliveryReportView.objects.filter(
        month=date(year, month, 1),
        **location_filters).order_by(default_order).values(*value_fields)
    if not include_test:
        data = apply_exclude(domain, data)
    data_count = data.count()
    config = {
        'data': [],
    }

    def should_show_25():
        return year >= 2020 and month >= 4

    def update_total_row(first_dict, second_dict):
        for key, value in first_dict.items():
            # excluding location and percentage fields
            if key not in location_fields + [
                    'cbe', 'thr', 'pse', 'sn', 'gm', 'home_visits'
            ]:
                first_dict[key] = format_data_not_entered_to_zero(first_dict[key]) +\
                                  format_data_not_entered_to_zero(second_dict[key])
        return first_dict

    def get_pw_lw_percents(return_dict, row_data):
        return_dict['home_visits'] = percent_or_not_entered(
            row_data['valid_visits'], row_data['expected_visits'])
        return_dict['gm'] = percent_or_not_entered(row_data['gm_0_3'],
                                                   row_data['children_0_3'])
        return_dict['cbe'] = percent_or_not_entered(
            row_data['num_awcs_conducted_cbe'], row_data['num_launched_awcs'])
        if should_show_25():
            return_dict['thr'] = percent_or_not_entered(
                row_data['thr_25_days'], row_data['thr_eligible'])
        else:
            return_dict['thr'] = percent_or_not_entered(
                row_data['thr_21_days'], row_data['thr_eligible'])
        return return_dict

    def get_children_percents(return_dict, row_data):
        return_dict['gm'] = percent_or_not_entered(row_data['gm_3_5'],
                                                   row_data['children_3_5'])
        if should_show_25():
            return_dict['pse'] = percent_or_not_entered(
                row_data['pse_25_days'], row_data['pse_eligible'])
            return_dict['sn'] = percent_or_not_entered(
                row_data['lunch_25_days'], row_data['pse_eligible'])
        else:
            return_dict['pse'] = percent_or_not_entered(
                row_data['pse_21_days'], row_data['pse_eligible'])
            return_dict['sn'] = percent_or_not_entered(
                row_data['lunch_21_days'], row_data['pse_eligible'])
        return return_dict

    def base_data(row_data):
        if step == 'pw_lw_children':
            return_dict = dict(
                state_name=get_value_or_data_not_entered(
                    row_data, 'state_name'),
                district_name=get_value_or_data_not_entered(
                    row_data, 'district_name'),
                block_name=get_value_or_data_not_entered(
                    row_data, 'block_name'),
                supervisor_name=get_value_or_data_not_entered(
                    row_data, 'supervisor_name'),
                awc_name=get_value_or_data_not_entered(row_data, 'awc_name'),
                num_launched_awcs=get_value_or_data_not_entered(
                    row_data, 'num_launched_awcs'),
                valid_visits=get_value_or_data_not_entered(
                    row_data, 'valid_visits'),
                expected_visits=get_value_or_data_not_entered(
                    row_data, 'expected_visits'),
                gm_0_3=get_value_or_data_not_entered(row_data, 'gm_0_3'),
                children_0_3=get_value_or_data_not_entered(
                    row_data, 'children_0_3'),
                num_awcs_conducted_cbe=get_value_or_data_not_entered(
                    row_data, 'num_awcs_conducted_cbe'),
                num_awcs_conducted_vhnd=get_value_or_data_not_entered(
                    row_data, 'num_awcs_conducted_vhnd'),
                thr_21_days=get_value_or_data_not_entered(
                    row_data, 'thr_21_days'),
                thr_25_days=get_value_or_data_not_entered(
                    row_data, 'thr_25_days'),
                thr_eligible=get_value_or_data_not_entered(
                    row_data, 'thr_eligible'),
                vhnd_conducted=get_value_or_data_not_entered(
                    row_data, 'vhnd_conducted'))
            return_dict = get_pw_lw_percents(return_dict, row_data)
        else:
            return_dict = dict(
                num_launched_awcs=get_value_or_data_not_entered(
                    row_data, 'num_launched_awcs'),
                state_name=get_value_or_data_not_entered(
                    row_data, 'state_name'),
                district_name=get_value_or_data_not_entered(
                    row_data, 'district_name'),
                block_name=get_value_or_data_not_entered(
                    row_data, 'block_name'),
                supervisor_name=get_value_or_data_not_entered(
                    row_data, 'supervisor_name'),
                awc_name=get_value_or_data_not_entered(row_data, 'awc_name'),
                lunch_21_days=get_value_or_data_not_entered(
                    row_data, 'lunch_21_days'),
                lunch_25_days=get_value_or_data_not_entered(
                    row_data, 'lunch_25_days'),
                pse_eligible=get_value_or_data_not_entered(
                    row_data, 'pse_eligible'),
                pse_21_days=get_value_or_data_not_entered(
                    row_data, 'pse_21_days'),
                pse_25_days=get_value_or_data_not_entered(
                    row_data, 'pse_25_days'),
                gm_3_5=get_value_or_data_not_entered(row_data, 'gm_3_5'),
                children_3_5=get_value_or_data_not_entered(
                    row_data, 'children_3_5'))
            return_dict = get_children_percents(return_dict, row_data)
        return return_dict

    all_row = dict()

    data_length = len(data)
    for index, row in enumerate(data):
        base_row = base_data(row)
        if not all_row.keys():
            all_row = copy.deepcopy(base_row)
        else:
            all_row = update_total_row(all_row, base_row)
        config['data'].append(base_row)
    if data_length:
        # setting location params to all
        for location in location_fields:
            all_row[location] = 'All'
        # Calculating percentages for all row
        if step == 'pw_lw_children':
            get_pw_lw_percents(all_row, all_row)
            all_row['cbe_sector_percent'] = percent_or_not_entered(
                all_row['num_awcs_conducted_cbe'], data_length)
            all_row['vhnd_sector_value'] = get_value_or_data_not_entered(
                all_row, 'num_awcs_conducted_vhnd')
        else:
            get_children_percents(all_row, all_row)

        percentage_fields = ('home_visits', 'gm', 'thr', 'sn', 'pse')
        if order:
            if order in percentage_fields:
                config['data'].sort(key=lambda x: float(x[order][:-1] if x[
                    order] != DATA_NOT_ENTERED else 0),
                                    reverse=reversed_order)
            else:
                config['data'].sort(key=lambda x: x[order],
                                    reverse=reversed_order)
        config['data'] = config['data'][start:(start + length)]
        config['data'].insert(0, all_row)
    config["aggregationLevel"] = location_filters['aggregation_level']
    config["recordsTotal"] = data_count
    config["recordsFiltered"] = data_count
    return config
Ejemplo n.º 41
0
def get_prevalence_of_undernutrition_sector_data(domain,
                                                 config,
                                                 loc_level,
                                                 location_id,
                                                 show_test=False,
                                                 icds_features_flag=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(**config).values(
        *group_by).annotate(
            moderately_underweight=Sum(
                'nutrition_status_moderately_underweight'),
            severely_underweight=Sum('nutrition_status_severely_underweight'),
            weighed=Sum('nutrition_status_weighed'),
            normal=Sum('nutrition_status_normal'),
            total=Sum('wer_eligible'),
        ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    if 'age_tranche' not in config:
        data = data.filter(age_tranche__lt=72)

    chart_data = {'blue': []}

    tooltips_data = defaultdict(
        lambda: {
            'severely_underweight': 0,
            'moderately_underweight': 0,
            'weighed': 0,
            'normal': 0,
            'total': 0
        })
    if icds_features_flag:
        location_launched_status = get_location_launched_status(
            config, loc_level)
    else:
        location_launched_status = None

    for row in data:
        if location_launched_status:
            launched_status = location_launched_status.get(row['%s_name' %
                                                               loc_level])
            if launched_status is None or launched_status <= 0:
                continue
        weighed = row['weighed']
        total = row['total']
        name = row['%s_name' % loc_level]

        severely_underweight = row['severely_underweight']
        moderately_underweight = row['moderately_underweight']
        normal = row['normal']

        tooltips_data[name]['severely_underweight'] += severely_underweight
        tooltips_data[name]['moderately_underweight'] += moderately_underweight
        tooltips_data[name]['weighed'] += (weighed or 0)
        tooltips_data[name]['normal'] += normal
        tooltips_data[name]['total'] += (total or 0)

        chart_data['blue'].append([
            name, ((moderately_underweight or 0) +
                   (severely_underweight or 0)) / float(weighed or 1)
        ])

    chart_data['blue'] = sorted(chart_data['blue'],
                                key=lambda loc_and_value:
                                (loc_and_value[0] is not None, loc_and_value))

    return {
        "tooltips_data":
        dict(tooltips_data),
        "info":
        underweight_children_help_text(age_label="0-5 years", html=True),
        "chart_data": [{
            "values": chart_data['blue'],
            "key": "",
            "strokeWidth": 2,
            "classed": "dashed",
            "color": MapColors.BLUE
        }]
    }
Ejemplo n.º 42
0
def get_service_delivery_details(domain,
                                 start,
                                 length,
                                 order,
                                 reversed_order,
                                 location_filters,
                                 year,
                                 month,
                                 step,
                                 include_test=False):
    if location_filters.get('aggregation_level') == 1:
        default_order = 'state_name'
    elif location_filters.get('aggregation_level') == 2:
        default_order = 'district_name'
    elif location_filters.get('aggregation_level') == 3:
        default_order = 'block_name'
    elif location_filters.get('aggregation_level') == 4:
        default_order = 'supervisor_name'
    else:
        default_order = 'awc_name'

    location_fields = [
        'state_name', 'district_name', 'block_name', 'supervisor_name',
        'awc_name'
    ]
    count_columns = ['num_launched_awcs']

    if step == 'thr':
        count_columns += [
            'thr_eligible', 'thr_0_days', 'thr_1_7_days', 'thr_8_14_days',
            'thr_15_20_days', 'thr_21_24_days', 'thr_25_days'
        ]
    elif step == 'cbe':
        count_columns += [
            'cbe_conducted', 'third_fourth_month_of_pregnancy_count',
            'annaprasan_diwas_count', 'suposhan_diwas_count',
            'coming_of_age_count', 'public_health_message_count'
        ]
    elif step == 'sn':
        count_columns += [
            'pse_eligible', 'lunch_0_days', 'lunch_1_7_days',
            'lunch_8_14_days', 'lunch_15_20_days', 'lunch_21_24_days',
            'lunch_25_days'
        ]
    elif step == 'pse':
        count_columns += [
            'pse_eligible', 'pse_0_days', 'pse_1_7_days', 'pse_8_14_days',
            'pse_15_20_days', 'pse_21_24_days', 'pse_25_days'
        ]
    values = location_fields + count_columns

    def get_data_for(default_order, values):
        return ServiceDeliveryReportView.objects.filter(month=date(year, month, 1), **location_filters)\
            .order_by(default_order).values(*values)

    data = get_data_for(default_order, values)

    if not include_test:
        data = apply_exclude(domain, data)
    data_count = data.count()
    config = {
        'data': [],
    }

    def update_total_row(first_dict, second_dict):
        for key, value in first_dict.items():
            # excluding location and percentage fields
            if key in values:
                first_dict[key] = format_data_not_entered_to_zero(first_dict[key]) +\
                                  format_data_not_entered_to_zero(second_dict[key])
        return first_dict

    def base_data(row_data):
        base_dict = dict(
            state_name=get_value_or_data_not_entered(row_data, 'state_name'),
            district_name=get_value_or_data_not_entered(
                row_data, 'district_name'),
            block_name=get_value_or_data_not_entered(row_data, 'block_name'),
            supervisor_name=get_value_or_data_not_entered(
                row_data, 'supervisor_name'),
            awc_name=get_value_or_data_not_entered(row_data, 'awc_name'),
            num_launched_awcs=get_value_or_data_not_entered(
                row_data, 'num_launched_awcs'))
        if step == 'thr':
            # calculating percents
            base_dict = _get_pre_percents(base_dict, row_data, 'thr', 'thr')
            # filling the data fields
            base_dict = _get_pre_values(base_dict, row_data, 'thr', 'thr')
        elif step == 'cbe':
            base_dict['cbe_conducted'] = get_value_or_data_not_entered(
                row_data, 'cbe_conducted')
            base_dict['third_fourth_month_of_pregnancy_count'] =\
                get_value_or_data_not_entered(row_data, 'third_fourth_month_of_pregnancy_count')
            base_dict[
                'annaprasan_diwas_count'] = get_value_or_data_not_entered(
                    row_data, 'annaprasan_diwas_count')
            base_dict['suposhan_diwas_count'] = get_value_or_data_not_entered(
                row_data, 'suposhan_diwas_count')
            base_dict['coming_of_age_count'] = get_value_or_data_not_entered(
                row_data, 'coming_of_age_count')
            base_dict['public_health_message_count'] =\
                get_value_or_data_not_entered(row_data, 'public_health_message_count')
        elif step == 'sn':
            base_dict = _get_pre_percents(base_dict, row_data, 'lunch', 'pse')
            base_dict = _get_pre_values(base_dict, row_data, 'lunch', 'pse')

        elif step == 'pse':
            base_dict = _get_pre_percents(base_dict, row_data, 'pse', 'pse')
            base_dict = _get_pre_values(base_dict, row_data, 'pse', 'pse')
        return base_dict

    all_row = dict()

    data_length = len(data)
    for index, row in enumerate(data):
        base_row = base_data(row)
        if not all_row.keys():
            all_row = copy.deepcopy(base_row)
        else:
            all_row = update_total_row(all_row, base_row)
        config['data'].append(base_data(row))
    if data_length:
        # setting location params to all
        for location in location_fields:
            all_row[location] = 'All'
        # Calculating percentages for all row
        if step == 'thr':
            all_row = _get_pre_percents(all_row, all_row, 'thr', 'thr')
        elif step == 'sn':
            all_row = _get_pre_percents(all_row, all_row, 'lunch', 'pse')
        elif step == 'pse':
            all_row = _get_pre_percents(all_row, all_row, 'pse', 'pse')

        sort_columns = [field + '_val' for field in count_columns]

        percentage_fields = sort_columns
        if order:
            if order in percentage_fields:
                config['data'].sort(key=lambda x: float(x[order][:-1] if x[
                    order] != DATA_NOT_ENTERED else 0),
                                    reverse=reversed_order)
            else:
                config['data'].sort(key=lambda x: x[order],
                                    reverse=reversed_order)
        config['data'] = config['data'][start:(start + length)]
        config['data'].insert(0, all_row)
    config["aggregationLevel"] = location_filters['aggregation_level']
    config["recordsTotal"] = data_count
    config["recordsFiltered"] = data_count

    return config
Ejemplo n.º 43
0
def get_prevalence_of_stunting_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        'month', '%s_name' % loc_level
    ).annotate(
        moderate=Sum('stunting_moderate'),
        severe=Sum('stunting_severe'),
        normal=Sum('stunting_normal'),
        total=Sum('height_eligible'),
        measured=Sum('height_measured_in_month'),
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    if 'age_tranche' not in config:
        chart_data = chart_data.exclude(age_tranche__in=[0, 6, 72])

    data = {
        'red': OrderedDict(),
        'orange': OrderedDict(),
        'peach': OrderedDict()
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['red'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}
        data['orange'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}
        data['peach'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}

    best_worst = {}
    for row in chart_data:
        date = row['month']
        total = row['total'] or 0
        measured = row['measured'] or 0
        location = row['%s_name' % loc_level]
        severe = row['severe'] or 0
        moderate = row['moderate'] or 0
        normal = row['normal'] or 0

        underweight = moderate + severe

        best_worst[location] = underweight * 100 / float(measured or 1)

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['peach'][date_in_miliseconds]['y'] += normal
        data['peach'][date_in_miliseconds]['measured'] += measured
        data['peach'][date_in_miliseconds]['all'] += total
        data['orange'][date_in_miliseconds]['y'] += moderate
        data['orange'][date_in_miliseconds]['measured'] += measured
        data['orange'][date_in_miliseconds]['all'] += total
        data['red'][date_in_miliseconds]['y'] += severe
        data['red'][date_in_miliseconds]['measured'] += measured
        data['red'][date_in_miliseconds]['all'] += total

    top_locations = sorted(
        [dict(loc_name=key, percent=value) for key, value in six.iteritems(best_worst)],
        key=lambda x: x['percent']
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'] / float(value['measured'] or 1),
                        'all': value['all'],
                        'measured': value['measured']
                    } for key, value in six.iteritems(data['peach'])
                ],
                "key": "% normal",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.PINK
            },
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'] / float(value['measured'] or 1),
                        'all': value['all'],
                        'measured': value['measured']
                    } for key, value in six.iteritems(data['orange'])
                ],
                "key": "% moderately stunted",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.ORANGE
            },
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'] / float(value['measured'] or 1),
                        'all': value['all'],
                        'measured': value['measured']
                    } for key, value in six.iteritems(data['red'])
                ],
                "key": "% severely stunted",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.RED
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 44
0
def get_awc_daily_status_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    last = datetime(*config['month']) - relativedelta(days=30)

    config['date__range'] = (last, month)
    del config['month']

    chart_data = AggAwcDailyView.objects.filter(
        **config
    ).values(
        'date', '%s_name' % loc_level
    ).annotate(
        in_day=Sum('daily_attendance_open'),
        all=Sum('num_launched_awcs'),
    ).order_by('date')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'open_in_day': OrderedDict(),
        'launched': OrderedDict()
    }

    dates = [dt for dt in rrule(DAILY, dtstart=last, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['open_in_day'][miliseconds] = {'y': 0, 'all': 0}
        data['launched'][miliseconds] = {'y': 0, 'all': 0}

    best_worst = defaultdict(lambda: {
        'in_month': 0,
        'all': 0
    })
    for row in chart_data:
        date = row['date']
        in_day = row['in_day'] or 0
        location = row['%s_name' % loc_level]
        valid = row['all'] or 0

        if date.month == (month - relativedelta(months=1)).month:
            best_worst[location]['in_day'] = in_day
            best_worst[location]['all'] = valid

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['open_in_day'][date_in_miliseconds]['y'] += in_day
        data['launched'][date_in_miliseconds]['y'] += valid

    top_locations = sorted(
        [
            dict(
                loc_name=key,
                value=value['in_day']
            ) for key, value in best_worst.iteritems()
        ],
        key=lambda x: x['value'],
        reverse=True
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'],
                        'all': value['all']
                    } for key, value in data['launched'].iteritems()
                ],
                "key": "Number of AWCs launched",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": PINK
            },
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'],
                        'all': value['all']
                    } for key, value in data['open_in_day'].iteritems()
                ],
                "key": "Total AWCs open yesterday",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": BLUE
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 45
0
def get_prevalence_of_stunting_data_chart(domain, config, loc_level, show_test=False, icds_feature_flag=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        'month', '%s_name' % loc_level
    ).annotate(
        moderate=Sum(stunting_moderate_column(icds_feature_flag)),
        severe=Sum(stunting_severe_column(icds_feature_flag)),
        normal=Sum(stunting_normal_column(icds_feature_flag)),
        total=Sum('height_eligible'),
        measured=Sum(hfa_recorded_in_month_column(icds_feature_flag)),
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    if 'age_tranche' not in config:
        chart_data = chart_data.exclude(age_tranche=72)

    data = {
        'red': OrderedDict(),
        'orange': OrderedDict(),
        'peach': OrderedDict()
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['red'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}
        data['orange'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}
        data['peach'][miliseconds] = {'y': 0, 'all': 0, 'measured': 0}

    best_worst = {}
    for row in chart_data:
        date = row['month']
        total = row['total'] or 0
        measured = row['measured'] or 0
        location = row['%s_name' % loc_level]
        severe = row['severe'] or 0
        moderate = row['moderate'] or 0
        normal = row['normal'] or 0

        underweight = moderate + severe

        best_worst[location] = underweight * 100 / float(measured or 1)

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['peach'][date_in_miliseconds]['y'] += normal
        data['peach'][date_in_miliseconds]['measured'] += measured
        data['peach'][date_in_miliseconds]['all'] += total
        data['orange'][date_in_miliseconds]['y'] += moderate
        data['orange'][date_in_miliseconds]['measured'] += measured
        data['orange'][date_in_miliseconds]['all'] += total
        data['red'][date_in_miliseconds]['y'] += severe
        data['red'][date_in_miliseconds]['measured'] += measured
        data['red'][date_in_miliseconds]['all'] += total

    top_locations = sorted(
        [dict(loc_name=key, percent=value) for key, value in six.iteritems(best_worst)],
        key=lambda x: (x['percent'], x['loc_name'])
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'] / float(value['measured'] or 1),
                        'all': value['all'],
                        'measured': value['measured']
                    } for key, value in six.iteritems(data['peach'])
                ],
                "key": "% normal",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.PINK
            },
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'] / float(value['measured'] or 1),
                        'all': value['all'],
                        'measured': value['measured']
                    } for key, value in six.iteritems(data['orange'])
                ],
                "key": "% moderately stunted",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.ORANGE
            },
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'] / float(value['measured'] or 1),
                        'all': value['all'],
                        'measured': value['measured']
                    } for key, value in six.iteritems(data['red'])
                ],
                "key": "% severely stunted",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.RED
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 46
0
def get_prevalence_of_stunting_sector_data(domain, config, loc_level, location_id, show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        moderate=Sum('stunting_moderate'),
        severe=Sum('stunting_severe'),
        total=Sum('height_eligible'),
        normal=Sum('stunting_normal'),
        total_measured=Sum('height_measured_in_month'),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)
    if 'age_tranche' not in config:
        data = data.exclude(age_tranche__in=[0, 6, 72])

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'severe': 0,
        'moderate': 0,
        'total': 0,
        'normal': 0,
        'total_measured': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        total = row['total'] or 0
        name = row['%s_name' % loc_level]
        result_set.add(name)

        severe = row['severe'] or 0
        moderate = row['moderate'] or 0
        normal = row['normal'] or 0
        total_measured = row['total_measured'] or 0

        row_values = {
            'severe': severe,
            'moderate': moderate,
            'total': total,
            'normal': normal,
            'total_measured': total_measured,
        }

        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        value = (moderate + severe) / float(total_measured or 1)
        chart_data['blue'].append([
            name, value
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    __, __, chosen_filters = chosen_filters_to_labels(config, default_interval='6 - 60 months')

    return {
        "tooltips_data": dict(tooltips_data),
        "info": _((
            "Percentage of children{} enrolled for Anganwadi Services with height-for-age below "
            "-2Z standard deviations of the WHO Child Growth Standards median."
            "<br/><br/>"
            "Stunting is a sign of chronic undernutrition and has long lasting harmful "
            "consequences on the growth of a child".format(chosen_filters)
        )),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
Ejemplo n.º 47
0
def get_prevalence_of_stunting_sector_data(domain, config, loc_level, location_id, show_test=False,
                                           icds_feature_flag=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        moderate=Sum(stunting_moderate_column(icds_feature_flag)),
        severe=Sum(stunting_severe_column(icds_feature_flag)),
        normal=Sum(stunting_normal_column(icds_feature_flag)),
        total=Sum('height_eligible'),
        total_measured=Sum(hfa_recorded_in_month_column(icds_feature_flag)),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)
    if 'age_tranche' not in config:
        data = data.exclude(age_tranche=72)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'severe': 0,
        'moderate': 0,
        'total': 0,
        'normal': 0,
        'total_measured': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        total = row['total'] or 0
        name = row['%s_name' % loc_level]
        result_set.add(name)

        severe = row['severe'] or 0
        moderate = row['moderate'] or 0
        normal = row['normal'] or 0
        total_measured = row['total_measured'] or 0

        row_values = {
            'severe': severe,
            'moderate': moderate,
            'total': total,
            'normal': normal,
            'total_measured': total_measured,
        }

        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        value = (moderate + severe) / float(total_measured or 1)
        chart_data['blue'].append([
            name, value
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    __, __, chosen_filters = chosen_filters_to_labels(
        config, default_interval=default_age_interval(icds_feature_flag)
    )

    return {
        "tooltips_data": dict(tooltips_data),
        "info": _((
            "Of the children enrolled for Anganwadi services, whose height was measured, the percentage "
            "of children between {} who were moderately/severely stunted in the current month. "
            "<br/><br/>"
            "Stunting is a sign of chronic undernutrition and has long lasting harmful consequences on "
            "the growth of a child".format(chosen_filters)
        )),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
def get_prevalence_of_undernutrition_data_chart(domain,
                                                config,
                                                loc_level,
                                                show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggChildHealthMonthly.objects.filter(**config).values(
        'month', '%s_name' % loc_level).annotate(
            moderately_underweight=Sum(
                'nutrition_status_moderately_underweight'),
            normal=Sum('nutrition_status_normal'),
            severely_underweight=Sum('nutrition_status_severely_underweight'),
            valid=Sum('valid_in_month'),
        ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'peach': OrderedDict(),
        'orange': OrderedDict(),
        'red': OrderedDict()
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['peach'][miliseconds] = {'y': 0, 'all': 0}
        data['orange'][miliseconds] = {'y': 0, 'all': 0}
        data['red'][miliseconds] = {'y': 0, 'all': 0}

    best_worst = {}
    for row in chart_data:
        date = row['month']
        valid = row['valid']
        location = row['%s_name' % loc_level]
        severely_underweight = row['severely_underweight']
        moderately_underweight = row['moderately_underweight']
        normal = row['normal']

        underweight = ((moderately_underweight or 0) +
                       (severely_underweight or 0)) * 100 / float(valid or 1)

        best_worst[location] = underweight

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['peach'][date_in_miliseconds]['y'] += normal
        data['peach'][date_in_miliseconds]['all'] += valid
        data['orange'][date_in_miliseconds]['y'] += moderately_underweight
        data['orange'][date_in_miliseconds]['all'] += valid
        data['red'][date_in_miliseconds]['y'] += severely_underweight
        data['red'][date_in_miliseconds]['all'] += valid

    top_locations = sorted([
        dict(loc_name=key, percent=value)
        for key, value in best_worst.iteritems()
    ],
                           key=lambda x: x['percent'])

    return {
        "chart_data": [{
            "values": [{
                'x': key,
                'y': value['y'] / float(value['all'] or 1),
                'all': value['all']
            } for key, value in data['peach'].iteritems()],
            "key":
            "% Normal",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            PINK
        }, {
            "values": [{
                'x': key,
                'y': value['y'] / float(value['all'] or 1),
                'all': value['all']
            } for key, value in data['orange'].iteritems()],
            "key":
            "% Moderately Underweight (-2 SD)",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ORANGE
        }, {
            "values": [{
                'x': key,
                'y': value['y'] / float(value['all'] or 1),
                'all': value['all']
            } for key, value in data['red'].iteritems()],
            "key":
            "% Severely Underweight (-3 SD) ",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            RED
        }],
        "all_locations":
        top_locations,
        "top_five":
        top_locations[:5],
        "bottom_five":
        top_locations[-5:],
        "location_type":
        loc_level.title()
        if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 49
0
def get_adult_weight_scale_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggAwcMonthly.objects.filter(
        **config
    ).values(
        'month', '%s_name' % loc_level
    ).annotate(
        in_month=Sum('infra_adult_weighing_scale'),
        all=Sum('num_awc_infra_last_update'),
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'blue': OrderedDict()
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0, 'in_month': 0}

    best_worst = defaultdict(lambda: {
        'in_month': 0,
        'all': 0
    })
    for row in chart_data:
        date = row['month']
        in_month = (row['in_month'] or 0)
        location = row['%s_name' % loc_level]
        valid = row['all']

        best_worst[location]['in_month'] = in_month
        best_worst[location]['all'] = (valid or 0)

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['blue'][date_in_miliseconds]['all'] += (valid or 0)
        data['blue'][date_in_miliseconds]['in_month'] += in_month

    top_locations = sorted(
        [
            dict(
                loc_name=key,
                percent=(value['in_month'] * 100) / float(value['all'] or 1)
            ) for key, value in six.iteritems(best_worst)
        ],
        key=lambda x: x['percent'],
        reverse=True
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['in_month'] / float(value['all'] or 1),
                        'in_month': value['in_month']
                    } for key, value in six.iteritems(data['blue'])
                ],
                "key": "Percentage of AWCs that reported having a weighing scale for mother and child",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.BLUE
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
def get_prevalence_of_undernutrition_sector_data(domain,
                                                 config,
                                                 loc_level,
                                                 show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(**config).values(
        *group_by).annotate(
            moderately_underweight=Sum(
                'nutrition_status_moderately_underweight'),
            severely_underweight=Sum('nutrition_status_severely_underweight'),
            valid=Sum('wer_eligible'),
            normal=Sum('nutrition_status_normal')).order_by('%s_name' %
                                                            loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {'blue': []}

    tooltips_data = defaultdict(
        lambda: {
            'severely_underweight': 0,
            'moderately_underweight': 0,
            'total': 0,
            'normal': 0
        })

    for row in data:
        valid = row['valid']
        name = row['%s_name' % loc_level]

        severely_underweight = row['severely_underweight']
        moderately_underweight = row['moderately_underweight']
        normal = row['normal']

        tooltips_data[name]['severely_underweight'] += severely_underweight
        tooltips_data[name]['moderately_underweight'] += moderately_underweight
        tooltips_data[name]['total'] += (valid or 0)
        tooltips_data[name]['normal'] += normal

        chart_data['blue'].append([
            name, ((moderately_underweight or 0) +
                   (severely_underweight or 0)) / float(valid or 1)
        ])

    return {
        "tooltips_data":
        dict(tooltips_data),
        "info":
        _(("Percentage of children between 0-5 years enrolled for ICDS services with weight-for-age "
           "less than -2 standard deviations of the WHO Child Growth Standards median. "
           "<br/><br/>"
           "Children who are moderately or severely underweight have a higher risk of mortality"
           )),
        "chart_data": [{
            "values": chart_data['blue'],
            "key": "",
            "strokeWidth": 2,
            "classed": "dashed",
            "color": BLUE
        }]
    }
Ejemplo n.º 51
0
def get_lactating_enrolled_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggCcsRecordMonthly.objects.filter(
        **config
    ).values(
        'month', '%s_name' % loc_level
    ).annotate(
        valid=Sum('lactating'),
        all=Sum('lactating_all')
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'blue': OrderedDict()
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0}

    best_worst = {}
    for row in chart_data:
        date = row['month']
        valid = row['valid'] or 0
        all_lactating = row['all'] or 0
        location = row['%s_name' % loc_level]

        if date.month == month.month:
            if location in best_worst:
                best_worst[location].append(valid)
            else:
                best_worst[location] = [valid]

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['blue'][date_in_miliseconds]['y'] += valid
        data['blue'][date_in_miliseconds]['all'] += all_lactating

    top_locations = sorted(
        [dict(loc_name=key, value=sum(value) / len(value)) for key, value in six.iteritems(best_worst)],
        key=lambda x: x['value'],
        reverse=True
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'],
                        'all': value['all']
                    } for key, value in six.iteritems(data['blue'])
                ],
                "key": "Total number of lactating women who are enrolled for Anganwadi Services",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.BLUE
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 52
0
def get_enrolled_women_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggCcsRecordMonthly.objects.filter(**config).values(
        'month', '%s_name' % loc_level).annotate(
            valid=Sum('pregnant'),
            all=Sum('pregnant_all'),
        ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {'blue': OrderedDict()}

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0}

    best_worst = {}
    for row in chart_data:
        date = row['month']
        valid = row['valid'] or 0
        all_pregnant = row['all'] or 0
        location = row['%s_name' % loc_level]

        if date.month == month.month:
            if location in best_worst:
                best_worst[location].append(valid)
            else:
                best_worst[location] = [valid]

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['blue'][date_in_miliseconds]['y'] += valid
        data['blue'][date_in_miliseconds]['all'] += all_pregnant

    all_locations = [{
        'loc_name': key,
        'value': sum(value) / len(value)
    } for key, value in best_worst.items()]
    all_locations_sorted_by_name = sorted(all_locations,
                                          key=lambda x: x['loc_name'])
    all_locations_sorted_by_value_and_name = sorted(
        all_locations_sorted_by_name, key=lambda x: x['value'], reverse=True)

    return {
        "chart_data": [{
            "values": [{
                'x': key,
                'y': value['y'],
                'all': value['all']
            } for key, value in data['blue'].items()],
            "key":
            "Total number of pregnant women who are enrolled for Anganwadi Services",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ChartColors.BLUE
        }],
        "all_locations":
        all_locations_sorted_by_value_and_name,
        "top_five":
        all_locations_sorted_by_value_and_name[:5],
        "bottom_five":
        all_locations_sorted_by_value_and_name[-5:],
        "location_type":
        loc_level.title()
        if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 53
0
def get_lactating_enrolled_women_sector_data(domain, config, loc_level, location_id, show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggCcsRecordMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        valid=Sum('lactating'),
        all=Sum('lactating_all')
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': []
    }

    tooltips_data = defaultdict(lambda: {
        'valid': 0,
        'all': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        valid = row['valid'] or 0
        all_lactating = row['all'] or 0
        name = row['%s_name' % loc_level]
        result_set.add(name)

        row_values = {
            'valid': valid,
            'all': all_lactating
        }
        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        chart_data['blue'].append([
            name, valid
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data": dict(tooltips_data),
        "format": "number",
        "info": percent_lactating_women_enrolled_help_text(),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            }
        ]
    }
Ejemplo n.º 54
0
def get_early_initiation_breastfeeding_data(domain,
                                            config,
                                            loc_level,
                                            location_id,
                                            show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(**config).values(
        *group_by).annotate(
            birth=Sum('bf_at_birth'),
            in_month=Sum('born_in_month'),
        ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'in_month': 0,
        'birth': 0,
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        in_month = row['in_month']
        name = row['%s_name' % loc_level]
        result_set.add(name)

        birth = row['birth']

        value = (birth or 0) / float(in_month or 1)

        tooltips_data[name]['birth'] += birth
        tooltips_data[name]['in_month'] += (in_month or 0)

        chart_data['blue'].append([name, value])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data":
        dict(tooltips_data),
        "info":
        early_initiation_breastfeeding_help_text(html=True),
        "chart_data": [{
            "values": chart_data['blue'],
            "key": "",
            "strokeWidth": 2,
            "classed": "dashed",
            "color": MapColors.BLUE
        }]
    }
Ejemplo n.º 55
0
def get_children_initiated_sector_data(domain, config, loc_level, location_id, show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        in_month=Sum('cf_initiation_in_month'),
        eligible=Sum('cf_initiation_eligible'),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'children': 0,
        'all': 0
    })

    loc_children = get_child_locations(domain, location_id, show_test)
    result_set = set()

    for row in data:
        valid = row['eligible']
        name = row['%s_name' % loc_level]
        result_set.add(name)

        in_month = row['in_month']
        row_values = {
            'children': in_month or 0,
            'all': valid or 0
        }
        for prop, value in six.iteritems(row_values):
            tooltips_data[name][prop] += value

        value = (in_month or 0) / float(valid or 1)

        chart_data['blue'].append([
            name, value
        ])

    for sql_location in loc_children:
        if sql_location.name not in result_set:
            chart_data['blue'].append([sql_location.name, 0])

    chart_data['blue'] = sorted(chart_data['blue'])

    return {
        "tooltips_data": dict(tooltips_data),
        "info": children_initiated_appropriate_complementary_feeding_help_text(html=True),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": MapColors.BLUE
            },
        ]
    }
Ejemplo n.º 56
0
def get_early_initiation_breastfeeding_chart(domain,
                                             config,
                                             loc_level,
                                             show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggChildHealthMonthly.objects.filter(**config).values(
        'month', '%s_name' % loc_level).annotate(
            birth=Sum('bf_at_birth'),
            in_month=Sum('born_in_month'),
        ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {'blue': OrderedDict()}

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0, 'birth': 0}

    best_worst = {}
    for row in chart_data:
        date = row['month']
        in_month = row['in_month']
        location = row['%s_name' % loc_level]
        birth = row['birth']

        best_worst[location] = (birth or 0) * 100 / float(in_month or 1)

        date_in_miliseconds = int(date.strftime("%s")) * 1000
        data_for_month = data['blue'][date_in_miliseconds]

        data_for_month['all'] += in_month
        data_for_month['birth'] += birth
        data_for_month['y'] = data_for_month['birth'] / float(
            data_for_month['all'] or 1)

    top_locations = sorted([
        dict(loc_name=key, percent=val)
        for key, val in six.iteritems(best_worst)
    ],
                           key=lambda x: x['percent'],
                           reverse=True)

    return {
        "chart_data": [{
            "values": [{
                'x': key,
                'y': val['y'],
                'all': val['all'],
                'birth': val['birth']
            } for key, val in six.iteritems(data['blue'])],
            "key":
            "% Early Initiation of Breastfeeding",
            "strokeWidth":
            2,
            "classed":
            "dashed",
            "color":
            ChartColors.BLUE
        }],
        "all_locations":
        top_locations,
        "top_five":
        top_locations[:5],
        "bottom_five":
        top_locations[-5:],
        "location_type":
        loc_level.title()
        if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 57
0
def get_children_initiated_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        'month', '%s_name' % loc_level
    ).annotate(
        in_month=Sum('cf_initiation_in_month'),
        eligible=Sum('cf_initiation_eligible'),
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'blue': OrderedDict()
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0, 'in_month': 0}

    best_worst = defaultdict(lambda: {
        'in_month': 0,
        'all': 0
    })
    for row in chart_data:
        date = row['month']
        in_month = row['in_month']
        location = row['%s_name' % loc_level]
        valid = row['eligible']

        best_worst[location]['in_month'] = in_month
        best_worst[location]['all'] = (valid or 0)

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data_for_month = data['blue'][date_in_miliseconds]
        data_for_month['in_month'] += in_month
        data_for_month['all'] += valid
        data_for_month['y'] = data_for_month['in_month'] / float(data_for_month['all'] or 1)

    top_locations = sorted(
        [
            dict(
                loc_name=key,
                percent=(value['in_month'] * 100) / float(value['all'] or 1)
            ) for key, value in six.iteritems(best_worst)
        ],
        key=lambda x: x['percent'],
        reverse=True
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'],
                        'all': value['all'],
                        'in_month': value['in_month']
                    } for key, value in six.iteritems(data['blue'])
                ],
                "key": "% Children began complementary feeding",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.BLUE
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 58
0
def get_immunization_coverage_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    three_before = datetime(*config['month']) - relativedelta(months=3)

    config['month__range'] = (three_before, month)
    del config['month']

    chart_data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        'month', '%s_name' % loc_level
    ).annotate(
        in_month=Sum('fully_immunized_on_time') + Sum('fully_immunized_late'),
        eligible=Sum('fully_immunized_eligible'),
    ).order_by('month')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'blue': OrderedDict(),
    }

    dates = [dt for dt in rrule(MONTHLY, dtstart=three_before, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['blue'][miliseconds] = {'y': 0, 'all': 0, 'in_month': 0}

    best_worst = defaultdict(lambda: {
        'in_month': 0,
        'all': 0
    })
    for row in chart_data:
        date = row['month']
        in_month = row['in_month']
        location = row['%s_name' % loc_level]
        valid = row['eligible']

        best_worst[location]['in_month'] = in_month
        best_worst[location]['all'] = (valid or 0)

        date_in_miliseconds = int(date.strftime("%s")) * 1000
        data_for_month = data['blue'][date_in_miliseconds]

        data_for_month['all'] += valid
        data_for_month['in_month'] += in_month
        data_for_month['y'] = data_for_month['in_month'] / float(data_for_month['all'] or 1)

    top_locations = sorted(
        [
            dict(
                loc_name=key,
                percent=(value['in_month'] * 100) / float(value['all'] or 1)
            ) for key, value in best_worst.iteritems()
        ],
        key=lambda x: x['percent'],
        reverse=True
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'],
                        'all': value['all'],
                        'in_month': value['in_month']
                    } for key, value in data['blue'].iteritems()
                ],
                "key": "% Children received complete immunizations by 1 year",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": BLUE
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 59
0
def get_awc_daily_status_data_chart(domain, config, loc_level, show_test=False):
    month = datetime(*config['month'])
    last = datetime(*config['month']) - relativedelta(days=30)

    config['date__range'] = (last, month)
    del config['month']

    chart_data = AggAwcDailyView.objects.filter(
        **config
    ).values(
        'date', '%s_name' % loc_level
    ).annotate(
        in_day=Sum('daily_attendance_open'),
        all=Sum('num_launched_awcs'),
    ).order_by('date')

    if not show_test:
        chart_data = apply_exclude(domain, chart_data)

    data = {
        'open_in_day': OrderedDict(),
        'launched': OrderedDict()
    }

    dates = [dt for dt in rrule(DAILY, dtstart=last, until=month)]

    for date in dates:
        miliseconds = int(date.strftime("%s")) * 1000
        data['open_in_day'][miliseconds] = {'y': 0, 'all': 0}
        data['launched'][miliseconds] = {'y': 0, 'all': 0}

    best_worst = defaultdict(lambda: {
        'in_month': 0,
        'all': 0
    })
    for row in chart_data:
        date = row['date']
        in_day = row['in_day'] or 0
        location = row['%s_name' % loc_level]
        valid = row['all'] or 0

        if date.month == month.month:
            best_worst[location]['in_day'] = in_day
            best_worst[location]['all'] = valid

        date_in_miliseconds = int(date.strftime("%s")) * 1000

        data['open_in_day'][date_in_miliseconds]['y'] += in_day
        data['launched'][date_in_miliseconds]['y'] += valid

    top_locations = sorted(
        [
            dict(
                loc_name=key,
                percent=value['in_day'] * 100 / value['all']
            ) for key, value in six.iteritems(best_worst)
        ],
        key=lambda x: x['percent'],
        reverse=True
    )

    return {
        "chart_data": [
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'],
                        'all': value['all']
                    } for key, value in six.iteritems(data['launched'])
                ],
                "key": "Number of AWCs launched",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.PINK
            },
            {
                "values": [
                    {
                        'x': key,
                        'y': value['y'],
                        'all': value['all']
                    } for key, value in six.iteritems(data['open_in_day'])
                ],
                "key": "Total AWCs open",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": ChartColors.BLUE
            }
        ],
        "all_locations": top_locations,
        "top_five": top_locations[:5],
        "bottom_five": top_locations[-5:],
        "location_type": loc_level.title() if loc_level != LocationTypes.SUPERVISOR else 'Sector'
    }
Ejemplo n.º 60
0
def get_immunization_coverage_sector_data(domain, config, loc_level, show_test=False):
    group_by = ['%s_name' % loc_level]

    config['month'] = datetime(*config['month'])
    data = AggChildHealthMonthly.objects.filter(
        **config
    ).values(
        *group_by
    ).annotate(
        in_month=Sum('fully_immunized_on_time') + Sum('fully_immunized_late'),
        eligible=Sum('fully_immunized_eligible'),
    ).order_by('%s_name' % loc_level)

    if not show_test:
        data = apply_exclude(domain, data)

    chart_data = {
        'blue': [],
    }

    tooltips_data = defaultdict(lambda: {
        'children': 0,
        'all': 0
    })

    for row in data:
        valid = row['eligible']
        name = row['%s_name' % loc_level]

        in_month = row['in_month']

        row_values = {
            'children': in_month or 0,
            'all': valid or 0
        }
        for prop, value in row_values.iteritems():
            tooltips_data[name][prop] += value

        value = (in_month or 0) / float(valid or 1)
        chart_data['blue'].append([
            name, value
        ])

    return {
        "tooltips_data": tooltips_data,
        "info": _((
            """
                Percentage of children 1 year+ who have recieved
                complete immunization as per National Immunization Schedule of India required by age 1
            """
        )),
        "chart_data": [
            {
                "values": chart_data['blue'],
                "key": "",
                "strokeWidth": 2,
                "classed": "dashed",
                "color": BLUE
            }
        ]
    }