Ejemplo n.º 1
0
def run_training(
    model_f,
    lr_f,
    name,
    epochs,
    batch_size,
    train_data,
    val_data,
    img,
    img_size,
    mixed_float=True,
    notebook=True,
):
    """
    val_data : (X_val, Y_val) tuple
    """
    if mixed_float:
        policy = mixed_precision.Policy('mixed_float16')
        mixed_precision.set_policy(policy)

    st = time.time()

    inputs = keras.Input((200, 200, 3))
    mymodel = AdiposeModel(inputs, model_f)
    loss = keras.losses.BinaryCrossentropy(from_logits=True)
    mymodel.compile(optimizer='adam',
                    loss=loss,
                    metrics=[
                        keras.metrics.BinaryAccuracy(threshold=0.5),
                    ])

    logdir = 'logs/fit/' + name
    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir,
                                                          histogram_freq=1,
                                                          profile_batch='3,5',
                                                          update_freq='epoch')
    lr_callback = keras.callbacks.LearningRateScheduler(lr_f, verbose=1)

    savedir = 'savedmodels/' + name + '/{epoch}'
    save_callback = keras.callbacks.ModelCheckpoint(savedir,
                                                    save_weights_only=True,
                                                    verbose=1)

    if notebook:
        tqdm_callback = TqdmNotebookCallback(
            metrics=['loss', 'binary_accuracy'], leave_inner=False)
    else:
        tqdm_callback = TqdmCallback()

    train_ds = create_train_dataset(img, train_data, img_size, batch_size)
    val_ds = create_train_dataset(img, val_data, img_size, batch_size, True)

    image_callback = ValFigCallback(val_ds, logdir)

    mymodel.fit(
        x=train_ds,
        epochs=epochs,
        steps_per_epoch=len(train_data) // batch_size,
        callbacks=[
            tensorboard_callback,
            lr_callback,
            save_callback,
            tqdm_callback,
            image_callback,
        ],
        verbose=0,
        validation_data=val_ds,
        validation_steps=10,
    )

    print('Took {} seconds'.format(time.time() - st))

    mymodel.evaluate(val_ds, steps=1000)
Ejemplo n.º 2
0
def run_training(
    model_f,
    lr_f,
    name,
    epochs,
    batch_size,
    steps_per_epoch,
    vid_dir,
    edge_dir,
    train_vid_names,
    val_vid_names,
    frame_size,
    flow_map_size,
    interpolate_ratios,
    patch_size,
    overlap,
    edge_model_f,
    mixed_float=True,
    notebook=True,
    profile=False,
    edge_model_path=None,
    amodel_path=None,
    load_model_path=None,
):
    """
    patch_size, frame_size and flow_map_size are all
        (WIDTH, HEIGHT) format
    """
    if ((edge_model_path is None) or (amodel_path is None))\
        and (load_model_path is None):
        raise ValueError('Need a path to load model')
    if mixed_float:
        policy = mixed_precision.Policy('mixed_float16')
        mixed_precision.set_global_policy(policy)

    st = time.time()

    a_model = anime_model(model_f, interpolate_ratios, flow_map_size)
    e_model = EdgeModel([patch_size[1], patch_size[0], 3], edge_model_f)

    if amodel_path is not None:
        a_model.load_weights(amodel_path).expect_partial()
        print('*' * 50)
        print(f'Anime model loaded from : {amodel_path}')
        print('*' * 50)

    if edge_model_path is not None:
        e_model.load_weights(edge_model_path).expect_partial()
        print('*' * 50)
        print(f'Edge model loaded from : {edge_model_path}')
        print('*' * 50)

    c_model = AnimeModelCyclic(
        a_model,
        e_model,
        (patch_size[1], patch_size[0]),
        overlap,
    )
    if load_model_path is not None:
        c_model.load_weights(load_model_path)
        print('*' * 50)
        print(f'Cyclic model loaded from : {load_model_path}')
        print('*' * 50)
    c_model.compile(optimizer='adam')

    logdir = 'logs/fit/' + name
    if profile:
        tensorboard_callback = tf.keras.callbacks.TensorBoard(
            log_dir=logdir,
            histogram_freq=1,
            profile_batch='3,5',
            update_freq='epoch')
    else:
        tensorboard_callback = tf.keras.callbacks.TensorBoard(
            log_dir=logdir,
            histogram_freq=1,
            profile_batch=0,
            update_freq='epoch')

    lr_callback = keras.callbacks.LearningRateScheduler(lr_f, verbose=1)

    savedir = 'savedmodels/' + name + '/{epoch}'
    save_callback = keras.callbacks.ModelCheckpoint(savedir,
                                                    save_weights_only=True,
                                                    verbose=1)

    if notebook:
        tqdm_callback = TqdmNotebookCallback(metrics=['loss'],
                                             leave_inner=False)
    else:
        tqdm_callback = TqdmCallback()

    train_ds = create_train_dataset(vid_dir,
                                    edge_dir,
                                    train_vid_names,
                                    frame_size,
                                    batch_size,
                                    parallel=6)
    val_ds = create_train_dataset(vid_dir,
                                  edge_dir,
                                  val_vid_names,
                                  frame_size,
                                  batch_size,
                                  val_data=True,
                                  parallel=4)

    image_callback = ValFigCallback(val_ds, logdir)

    c_model.fit(
        x=train_ds,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        callbacks=[
            tensorboard_callback,
            lr_callback,
            save_callback,
            tqdm_callback,
            image_callback,
        ],
        verbose=0,
        validation_data=val_ds,
        validation_steps=50,
    )

    delta = time.time() - st
    hours, remain = divmod(delta, 3600)
    minutes, seconds = divmod(remain, 60)
    print(
        f'Took {hours:.0f} hours {minutes:.0f} minutes {seconds:.2f} seconds')
Ejemplo n.º 3
0
def run_training(
    encoder_f,
    box_f,
    lr_f,
    name,
    epochs,
    batch_size,
    steps_per_epoch,
    img,
    data,
    val_data,
    img_size,
    mixed_float=True,
    notebook=True,
):
    """
    val_data : (X_val, Y_val) tuple
    """
    if mixed_float:
        policy = mixed_precision.Policy('mixed_float16')
        mixed_precision.set_policy(policy)

    st = time.time()

    inputs = {
        'image': keras.Input((img_size[0], img_size[1], 3)),
        'pos': keras.Input((2))
    }
    mymodel = BoxModel(inputs, encoder_f, box_f)
    loss = keras.losses.MeanSquaredError()
    mymodel.compile(
        optimizer='adam',
        loss=loss,
        # metrics=[
        #     'mse',
        # ]
    )

    logdir = 'logs/fit/' + name
    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir,
                                                          histogram_freq=1,
                                                          profile_batch='3,5',
                                                          update_freq='epoch')
    lr_callback = keras.callbacks.LearningRateScheduler(lr_f, verbose=1)

    savedir = 'savedmodels/' + name + '/{epoch}'
    save_callback = keras.callbacks.ModelCheckpoint(savedir,
                                                    save_weights_only=True,
                                                    verbose=1)

    if notebook:
        tqdm_callback = TqdmNotebookCallback(
            metrics=['loss', 'binary_accuracy'], leave_inner=False)
    else:
        tqdm_callback = TqdmCallback()

    # if augment:
    train_ds = create_train_dataset(img, data, img_size, batch_size)
    mymodel.fit(
        x=train_ds,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        validation_data=val_data,
        callbacks=[
            tensorboard_callback,
            lr_callback,
            save_callback,
            tqdm_callback,
        ],
        verbose=0,
        # validation_data=val_data,
    )

    # else:
    #     mymodel.fit(
    #         x=X_train,
    #         y=Y_train,
    #         epochs=epochs,
    #         batch_size=batch_size,
    #         callbacks=[
    #             tensorboard_callback,
    #             lr_callback,
    #             save_callback,
    #             tqdm_callback,
    #         ],
    #         verbose=0,
    #         validation_data=val_data
    #     )

    print('Took {} seconds'.format(time.time() - st))
Ejemplo n.º 4
0
def run_training(
    model_f,
    lr_f,
    name,
    epochs,
    batch_size,
    steps_per_epoch,
    train_vid_paths,
    val_vid_paths,
    test_vid_paths,
    frame_size,
    interpolate_ratios,
    mixed_float=True,
    notebook=True,
    profile=False,
    load_model_path=None,
):
    if mixed_float:
        policy = mixed_precision.Policy('mixed_float16')
        mixed_precision.set_global_policy(policy)

    st = time.time()

    inputs = keras.Input((frame_size[1], frame_size[0], 6))
    mymodel = AnimeModel(inputs, model_f, interpolate_ratios)
    if load_model_path:
        mymodel.load_weights(load_model_path)
        print(f'Loaded from : {load_model_path}')
    loss = keras.losses.MeanAbsoluteError()
    mymodel.compile(
        optimizer='adam',
        loss=loss,
    )

    logdir = 'logs/fit/' + name
    if profile:
        tensorboard_callback = tf.keras.callbacks.TensorBoard(
            log_dir=logdir,
            histogram_freq=1,
            profile_batch='3,5',
            update_freq=steps_per_epoch)
    else:
        tensorboard_callback = tf.keras.callbacks.TensorBoard(
            log_dir=logdir,
            histogram_freq=1,
            profile_batch=0,
            update_freq=steps_per_epoch)

    lr_callback = keras.callbacks.LearningRateScheduler(lr_f, verbose=1)

    savedir = 'savedmodels/' + name + '/{epoch}'
    save_callback = keras.callbacks.ModelCheckpoint(savedir,
                                                    save_weights_only=True,
                                                    verbose=1)

    if notebook:
        tqdm_callback = TqdmNotebookCallback(metrics=['loss'],
                                             leave_inner=False)
    else:
        tqdm_callback = TqdmCallback()

    train_ds = create_train_dataset(train_vid_paths, frame_size, batch_size)
    val_ds = create_train_dataset(val_vid_paths, frame_size, batch_size, True)

    image_callback = ValFigCallback(val_ds, logdir)

    mymodel.fit(
        x=train_ds,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        callbacks=[
            tensorboard_callback,
            lr_callback,
            save_callback,
            tqdm_callback,
            image_callback,
        ],
        verbose=0,
        validation_data=val_ds,
        validation_steps=10,
    )

    delta = time.time() - st
    hours, remain = divmod(delta, 3600)
    minutes, seconds = divmod(remain, 60)
    print(
        f'Took {hours:.0f} hours {minutes:.0f} minutes {seconds:.2f} seconds')
def run_training(
    backbone_f,
    lr_f,
    name,
    epochs,
    steps_per_epoch,
    # batch_size,
    intermediate_filters,
    kernel_size,
    stride,
    rfcn_window,
    anchor_ratios,
    anchor_scales,
    class_names,
    bbox_sizes,
    train_dir,
    val_dir,
    img_size,
    frozen_layers=[],
    mixed_float=True,
    notebook=True,
    load_model_path=None,
    profile=False,
):
    """
    img_size:
        (WIDTH, HEIGHT)
    frozen layers:
        one or more of ['rfcn','rpn','backbone']
    """

    if mixed_float:
        policy = mixed_precision.Policy('mixed_float16')
        mixed_precision.set_global_policy(policy)

    st = time.time()

    inputs = keras.Input((img_size[0], img_size[1], 3))
    if class_names is None:
        num_classes = 1
    else:
        num_classes = len(class_names) + 1
    mymodel = ObjectDetector(backbone_f, intermediate_filters, kernel_size,
                             stride, img_size, num_classes, rfcn_window,
                             anchor_ratios, anchor_scales)

    if load_model_path:
        mymodel.load_weights(load_model_path).expect_partial()
        print('loaded from : ' + load_model_path)

    #-------------------- Freeze R-FCN
    if 'rfcn' in frozen_layers:
        print('####################Freezing rfcn layers')
        mymodel.rfcn_cls_conv.trainable = False
        mymodel.rfcn_reg_conv.trainable = False
    else:
        if 'rfcn_cls' in frozen_layers:
            print('####################Freezing rfcn_cls layers')
            mymodel.rfcn_cls_conv.trainable = False
        if 'rfcn_reg' in frozen_layers:
            print('####################Freezing rfcn_reg layers')
            mymodel.rfcn_reg_conv.trainable = False
    #--------------------Freeze RPN
    if 'rpn' in frozen_layers:
        print('####################Freezing rpn layers')
        mymodel.rpn_inter_conv.trainable = False
        mymodel.rpn_cls_conv.trainable = False
        mymodel.rpn_reg_conv.trainable = False
    else:
        if 'rpn_inter' in frozen_layers:
            print('####################Freezing rpn_inter layers')
            mymodel.rpn_inter_conv.trainable = False
        if 'rpn_cls' in frozen_layers:
            print('####################Freezing rpn_cls layers')
            mymodel.rpn_cls_conv.trainable = False
        if 'rpn_reg' in frozen_layers:
            print('####################Freezing rpn_reg layers')
            mymodel.rpn_reg_conv.trainable = False
    #---------------------Freeze Backbone
    if 'backbone' in frozen_layers:
        print('####################Freezing backbone layers')
        mymodel.backbone_model.trainable = False

    mymodel.compile(optimizer='adam', )

    logdir = 'logs/fit/' + name
    if profile:
        tensorboard_callback = tf.keras.callbacks.TensorBoard(
            log_dir=logdir,
            histogram_freq=1,
            profile_batch='7,9',
            update_freq='epoch')
    else:
        tensorboard_callback = tf.keras.callbacks.TensorBoard(
            log_dir=logdir,
            histogram_freq=1,
            profile_batch=0,
            update_freq='epoch')
    lr_callback = keras.callbacks.LearningRateScheduler(lr_f, verbose=1)

    savedir = 'savedmodels/' + name + '/{epoch}'
    save_callback = keras.callbacks.ModelCheckpoint(savedir,
                                                    save_weights_only=True,
                                                    verbose=1)

    if notebook:
        tqdm_callback = TqdmNotebookCallback(metrics=['loss'],
                                             leave_inner=False)
    else:
        tqdm_callback = TqdmCallback()

    train_ds = create_train_dataset(
        train_dir,
        img_size,
        class_names,
        bbox_sizes,
        buffer_size=1000,
    )
    val_ds = create_train_dataset(
        val_dir,
        img_size,
        class_names,
        bbox_sizes,
        buffer_size=100,
        val_data=True,
    )

    image_callback = ValFigCallback(val_ds, logdir)

    mymodel.fit(
        x=train_ds,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        # steps_per_epoch=10,
        callbacks=[
            tensorboard_callback,
            lr_callback,
            save_callback,
            tqdm_callback,
            image_callback,
        ],
        verbose=0,
        # validation_data=val_ds,
        # validation_steps=100,
    )

    delta = time.time() - st
    hours, remain = divmod(delta, 3600)
    minutes, seconds = divmod(remain, 60)
    print(datetime.now().strftime('%Y/%m/%d %H:%M:%S'))
    print(
        f'Took {hours:.0f} hours {minutes:.0f} minutes {seconds:.2f} seconds')