def find_squares4(color_img):
    """
    Finds multiple squares in image

    Steps:
    -Use Canny edge to highlight contours, and dilation to connect
    the edge segments.
    -Threshold the result to binary edge tokens
    -Use cv.FindContours: returns a cv.CvSequence of cv.CvContours
    -Filter each candidate: use Approx poly, keep only contours with 4 vertices, 
    enough area, and ~90deg angles.

    Return all squares contours in one flat list of arrays, 4 x,y points each.
    """
    #select even sizes only
    width, height = (color_img.width & -2, color_img.height & -2)
    timg = cv.CloneImage(color_img)  # make a copy of input image
    gray = cv.CreateImage((width, height), 8, 1)

    # select the maximum ROI in the image
    cv.SetImageROI(timg, (0, 0, width, height))

    # down-scale and upscale the image to filter out the noise
    pyr = cv.CreateImage((width / 2, height / 2), 8, 3)
    cv.PyrDown(timg, pyr, 7)
    cv.PyrUp(pyr, timg, 7)

    tgray = cv.CreateImage((width, height), 8, 1)
    squares = []

    # Find squares in every color plane of the image
    # Two methods, we use both:
    # 1. Canny to catch squares with gradient shading. Use upper threshold
    # from slider, set the lower to 0 (which forces edges merging). Then
    # dilate canny output to remove potential holes between edge segments.
    # 2. Binary thresholding at multiple levels
    N = 11
    for c in [0, 1, 2]:
        #extract the c-th color plane
        cv.SetImageCOI(timg, c + 1)
        cv.Copy(timg, tgray, None)
        cv.Canny(tgray, gray, 0, 50, 5)
        cv.Dilate(gray, gray)
        squares = squares + find_squares_from_binary(gray)

        # Look for more squares at several threshold levels
        for l in range(1, N):
            cv.Threshold(tgray, gray, (l + 1) * 255 / N, 255,
                         cv.CV_THRESH_BINARY)
            squares = squares + find_squares_from_binary(gray)

    return squares
Ejemplo n.º 2
0


if __name__ == '__main__':
    img = cv.CreateImage((100, 100), 8, 1)
    a = (50, -10)
    b = (85, 50)
    c = (50, 90)
    d = (5, 50)
    cv.FillConvexPoly(img, [a, b, c, d], (255, 255, 255))
    temp = 'temp'
    cv.NamedWindow(temp)

    oa, ob, oc, od = (48, -8), (80, 50), (48, 88), (0, 50)
    points = [oa, ob, oc, od]
    corners = [Corner(points, 0), Corner(points, 1), Corner(points, 2), Corner(points, 3)]
    CP = CornerPredictor(corners, 50, img)

    cv.PolyLine(img, [[oa, ob, oc, od]], 1, (150, 100, 100))

    dimg = cv.CreateImage((200, 200), 8, 1)
    cv.PyrUp(img, dimg)
    cv.ShowImage(temp, dimg)
    cv.WaitKey(10000)






Ejemplo n.º 3
0
Archivo: good.py Proyecto: imclab/kifu
            break

fname =  sys.argv[1]
original= cv.LoadImage(fname)

img = cv.CreateImage( cv.GetSize(original), cv.IPL_DEPTH_8U, 1)
cv.CvtColor(original,img, cv.CV_BGR2GRAY)

cv.AdaptiveThreshold(img, img, 255.0, cv.CV_THRESH_BINARY, cv.CV_ADAPTIVE_THRESH_MEAN_C,9)


# down-scale and upscale the image to filter out the noise
pyr = cv.CreateImage((img.width/2, img.height/2),  cv.IPL_DEPTH_8U, 1)

cv.PyrDown(img, pyr, 7)
cv.PyrUp(pyr, img, 7)

cv.Smooth(img, img, cv.CV_MEDIAN, 1, 5 )

#cv.Dilate(img,img,None,1)
#cv.Erode(img,img,None,1)

cv.AdaptiveThreshold(img, img, 255.0, cv.CV_THRESH_BINARY, cv.CV_ADAPTIVE_THRESH_MEAN_C,9)

showme= cv.CloneImage(img)
size = cv.GetSize(img)

cv.ShowImage("Show Me", img )

cv.SaveImage("imgfix.jpg",img)
Ejemplo n.º 4
0
def find_object(img, colour):
    '''
    Finds the objects in an image with given colour.
    Arguments:
    img	    -- the image to be processed
    colour  -- the colour to look for (red, blue or yellow)
    
    Returns:
    Point representing object's centre of mass

    '''
    # Convert to hsv
    size = cv.GetSize(img)
    tempImage = cv.CreateImage((size[0] / 2, size[1] / 2), 8, 3)

    # Reduce noise by down- and up-scaling input image
    cv.PyrDown(img, tempImage, 7)
    cv.PyrUp(tempImage, img, 7)
    hsv = cv.CreateImage(size, cv.IPL_DEPTH_8U, 3)
    cv.CvtColor(img, hsv, cv.CV_BGR2HSV)
    # Convert to binary image based on colour

    mask = cv.CreateMat(size[1], size[0], cv.CV_8UC1)
    maskSize = cv.GetSize(mask)
    if (colour == "RED"):
        redLower = cv.Scalar(mods[0] * 256, mods[1] * 256, mods[2] * 256)
        redUpper = cv.Scalar(mods[3] * 256, mods[4] * 256, mods[5] * 256)
        cv.InRangeS(hsv, redLower, redUpper, mask)
        cv.ShowImage("Red:", mask)
    elif (colour == "BLUE"):
        blueLower = cv.Scalar(mods[6] * 256, mods[7] * 256, mods[8] * 256)
        blueUpper = cv.Scalar(mods[9] * 256, mods[10] * 256, mods[11] * 256)
        cv.InRangeS(hsv, blueLower, blueUpper, mask)
        cv.ShowImage("Blue:", mask)
    elif (colour == "YELLOW"):
        yellowLower = cv.Scalar(mods[12] * 256, mods[13] * 256, mods[14] * 256)
        yellowUpper = cv.Scalar(mods[15] * 256, mods[16] * 256, mods[17] * 256)
        cv.InRangeS(hsv, yellowLower, yellowUpper, mask)
        cv.ShowImage("Yellow:", mask)
    elif (colour == "YWHITE"):
        blackLower = cv.Scalar(mods[18] * 256, mods[19] * 256, mods[20] * 256)
        blackUpper = cv.Scalar(mods[21] * 256, mods[22] * 256, mods[23] * 256)
        cv.InRangeS(hsv, blackLower, blackUpper, mask)
        cv.ShowImage("YellowWhite:", mask)
    elif (colour == "BWHITE"):
        blackLower = cv.Scalar(mods[18] * 256, mods[19] * 256, mods[20] * 256)
        blackUpper = cv.Scalar(mods[21] * 256, mods[22] * 256, mods[23] * 256)
        cv.InRangeS(hsv, blackLower, blackUpper, mask)
        cv.ShowImage("BlueWhite:", mask)

    # Count white pixels to make sure program doesn't crash if it finds nothing
    if (cv.CountNonZero(mask) < 3):
        return ((0, 0), 0)

    # Clean up the image to reduce anymore noise in the binary image
    cv.Smooth(mask, mask, cv.CV_GAUSSIAN, 9, 9, 0, 0)
    convKernel = cv.CreateStructuringElementEx(9, 9, 0, 0, cv.CV_SHAPE_RECT)
    cv.Erode(mask, mask, convKernel, 1)
    cv.Dilate(mask, mask, convKernel, 1)

    moments = cv.Moments(mask, 1)
    M00 = cv.GetSpatialMoment(moments, 0, 0)
    M10 = cv.GetSpatialMoment(moments, 1, 0)
    M01 = cv.GetSpatialMoment(moments, 0, 1)

    if M00 == 0:
        M00 = 0.01

    center_of_mass = (round(M10 / M00), round(M01 / M00))

    if (colour == "BLUE" or colour == "YELLOW"):
        return (center_of_mass, find_orientation(mask, center_of_mass))
    else:
        return (center_of_mass, 0)
Ejemplo n.º 5
0
def findSquares4(img, storage):
    N = 11
    sz = (img.width & -2, img.height & -2)
    timg = cv.CloneImage(img)
    # make a copy of input image
    gray = cv.CreateImage(sz, 8, 1)
    pyr = cv.CreateImage((sz.width / 2, sz.height / 2), 8, 3)
    # create empty sequence that will contain points -
    # 4 points per square (the square's vertices)
    squares = cv.CreateSeq(0, sizeof_CvSeq, sizeof_CvPoint, storage)
    squares = CvSeq_CvPoint.cast(squares)

    # select the maximum ROI in the image
    # with the width and height divisible by 2
    subimage = cv.GetSubRect(timg, cv.Rect(0, 0, sz.width, sz.height))

    # down-scale and upscale the image to filter out the noise
    cv.PyrDown(subimage, pyr, 7)
    cv.PyrUp(pyr, subimage, 7)
    tgray = cv.CreateImage(sz, 8, 1)
    # find squares in every color plane of the image
    for c in range(3):
        # extract the c-th color plane
        channels = [None, None, None]
        channels[c] = tgray
        cv.Split(subimage, channels[0], channels[1], channels[2], None)
        for l in range(N):
            # hack: use Canny instead of zero threshold level.
            # Canny helps to catch squares with gradient shading
            if (l == 0):
                # apply Canny. Take the upper threshold from slider
                # and set the lower to 0 (which forces edges merging)
                cv.Canny(tgray, gray, 0, thresh, 5)
                # dilate canny output to remove potential
                # holes between edge segments
                cv.Dilate(gray, gray, None, 1)
            else:
                # apply threshold if l!=0:
                #     tgray(x, y) = gray(x, y) < (l+1)*255/N ? 255 : 0
                cv.Threshold(tgray, gray, (l + 1) * 255 / N, 255,
                             cv.CV_THRESH_BINARY)

            # find contours and store them all as a list
            count, contours = cv.FindContours(gray, storage, sizeof_CvContour,
                                              cv.CV_RETR_LIST,
                                              cv.CV_CHAIN_APPROX_SIMPLE,
                                              (0, 0))

            if not contours:
                continue

            # test each contour
            for contour in contours.hrange():
                # approximate contour with accuracy proportional
                # to the contour perimeter
                result = cv.ApproxPoly(contour, sizeof_CvContour, storage,
                                       cv.CV_POLY_APPROX_DP,
                                       cv.ContourPerimeter(contours) * 0.02, 0)
                # square contours should have 4 vertices after approximation
                # relatively large area (to filter out noisy contours)
                # and be convex.
                # Note: absolute value of an area is used because
                # area may be positive or negative - in accordance with the
                # contour orientation
                if (result.total == 4 and abs(cv.ContourArea(result)) > 1000
                        and cv.CheckContourConvexity(result)):
                    s = 0
                    for i in range(5):
                        # find minimum angle between joint
                        # edges (maximum of cosine)
                        if (i >= 2):
                            t = abs(
                                angle(result[i], result[i - 2], result[i - 1]))
                            if s < t:
                                s = t
                    # if cosines of all angles are small
                    # (all angles are ~90 degree) then write quandrange
                    # vertices to resultant sequence
                    if (s < 0.3):
                        for i in range(4):
                            squares.append(result[i])

    return squares