Ejemplo n.º 1
0
    def detect(self, image):

        markers = []

        # Stage 1: Detect edges in image
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray, (5, 5), 0)
        edges = cv2.Canny(gray, 100, 200)

        # Stage 2: Find contours
        contours, _ = cv2.findContours(edges, cv2.RETR_TREE,
                                       cv2.CHAIN_APPROX_SIMPLE)
        contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]

        for contour in contours:

            # Stage 3: Shape check
            perimeter = cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, 0.01 * perimeter, True)

            if len(approx) == self.QUADRILATERAL_POINTS:

                # Stage 4: Perspective warping
                topdown_quad = get_topdown_quad(gray, approx.reshape(4, 2))

                # Stage 5: Border check
                if topdown_quad[(topdown_quad.shape[0] / 100.0) * 5,
                                (topdown_quad.shape[1] / 100.0) *
                                5] > self.BLACK_THRESHOLD:
                    continue

                # Stage 6: Get marker pattern
                marker_pattern = None

                try:
                    marker_pattern = get_marker_pattern(
                        topdown_quad, self.BLACK_THRESHOLD,
                        self.WHITE_THRESHOLD)
                except:
                    continue

                if not marker_pattern: continue

                # Stage 7: Match marker pattern
                marker_found, marker_rotation, marker_name = match_marker_pattern(
                    marker_pattern)

                if marker_found:

                    # Stage 8: Duplicate marker check
                    if marker_name in [
                            marker[self.MARKER_NAME_INDEX]
                            for marker in markers
                    ]:
                        continue

                    # Stage 9: Get rotation and translation vectors
                    rvecs, tvecs = get_vectors(image, approx.reshape(4, 2),
                                               self.mtx, self.dist)
                    markers.append(
                        [rvecs, tvecs, marker_rotation, marker_name])

        return markers
Ejemplo n.º 2
0
import cv2
import numpy as np

cap = cv2.VideoCapture(0)

while True:
    _, frame = cap.read()

    laplacian = cv2.Laplacian(frame, cv2.CV_64F)
    sobelx = cv2.Sobel(frame, cv2.CV_64F, 1, 0, ksize=5)
    sobely = cv2.Sobel(frame, cv2.CV_64F, 0, 1, ksize=5)
    edges = cv2.Canny(frame, 100, 200)

    cv2.imshow('original', frame)
    cv2.imshow('laplacian', laplacian)
    cv2.imshow('sobelx', sobelx)
    cv2.imshow('sobely', sobely)
    cv2.imshow('edges', edges)

    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break

cv2.destroyAllWindows()
cv2.release()
Ejemplo n.º 3
0
            # circle outline
            radius = i[2]
            cv2.circle(img, center, radius, (255, 0, 255), 3)
   '''
'''
#사람 인식
human_cascade = cv2.CascadeClassifier('haarcascade_fullbody.xml')
human=human_cascade.detectMultiScale(gray,1.1,4)

for(x,y,w,h) in human:
    cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,220),3)

'''

#경기장 인식
edges = cv2.Canny(gray, 400, 450, apertureSize=3)
lines = cv2.HoughLines(edges, 1, np.pi / 180, 100)

for i in range(len(lines)):
    for rho, theta in lines[i]:
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        x1 = int(x0 + 1000 * (-b))
        y1 = int(y0 + 1000 * (a))
        x2 = int(x0 - 1000 * (-b))
        y2 = int(y0 - 1000 * (a))

        cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.imshow('canny', edges)
Ejemplo n.º 4
0
while rval and img_number < 3001:
    # tutorial https://medium.com/analytics-vidhya/hand-detection-and-finger-counting-using-opencv-python-5b594704eb08
    # tutorial for Canny https://hub.packtpub.com/opencv-detecting-edges-lines-shapes/
    #cv2.imwrite('testing.jpg', cv2.Canny(img, 200, 300))
    #cv2.imshow('canny', cv2.imread('testing.jpg'))
    time.sleep(0.01)
    img = cv2.imread(
        'training_datasets/asl_alphabet_train/B/B' + str(img_number) + '.jpg',
        0)
    #hsvim = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    #lower = np.array([0, 48, 80], dtype = "uint8")
    #upper = np.array([20, 255, 255], dtype = "uint8")
    #skinRegionHSV = cv2.inRange(hsvim, lower, upper)
    #blurred = cv2.blur(skinRegionHSV, (2,2))
    #ret,thresh = cv2.threshold(blurred,0,255,cv2.THRESH_BINARY)
    cv2.imshow('B', cv2.Canny(img, 200, 300))
    #contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    #try:
    #contours = max(contours, key=lambda x: cv2.contourArea(x),default=0)
    #except:
    #    print('oops')
    #contours = max(contours, key=lambda x: cv2.contourArea(x),default=0)
    #cv2.drawContours(frame, contours, -1, (255,255,0), 2)
    #cv2.imshow("contours", frame)
    #
    ##-------------------------------------------------------
    ##   HULL CHANGES
    ##-------------------------------------------------------
    #for i in range(len(contours)):
    #    hull = cv2.convexHull(contours[i])
    #    cv2.drawContours(frame, [hull], -1, (255, 0, 0), 2)
Ejemplo n.º 5
0
# -*- coding: utf-8 -*-
"""
Created on Tue May  5 12:24:50 2020

@author: JIt Shil
"""

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

img = cv.imread('master.jpg', 0)
lp = cv.Laplacian(img, cv.CV_64F)
sobelx = cv.Sobel(img, cv.CV_64F, 1, 0)
sobely = cv.Sobel(img, cv.CV_64F, 0, 1)
canny = cv.Canny(img, 100, 200)

lp = np.uint8(np.absolute(lp))
sobelx = np.uint8(np.absolute(sobelx))
sobely = np.uint8(np.absolute(sobely))
combined = cv.bitwise_or(sobelx, sobely)

titles = ['original', 'laplacian', 'sobelx', 'sobely', 'canny', 'combined']
images = [img, lp, sobelx, sobely, canny, combined]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])

plt.show()
Ejemplo n.º 6
0
import numpy as np
import cv2
from numpy import linalg as LA

# Read in and grayscale the image
image = mpimg.imread('exit-ramp.jpg')
gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)

# Define a kernel size and apply Gaussian smoothing
kernel_size = 5
blur_gray = cv2.GaussianBlur(gray,(kernel_size, kernel_size),0)

# Define our parameters for Canny and apply
low_threshold = 50
high_threshold = 150
edges = cv2.Canny(blur_gray, low_threshold, high_threshold)

fig3 = plt.figure()
plt.imshow(edges, cmap='Greys_r')

ysize = edges.shape[0]
xsize = edges.shape[1]
region_select = np.copy(edges)

# Define a triangle region of interest 
# Keep in mind the origin (x=0, y=0) is in the upper left in image processing
# Note: if you run this code, you'll find these are not sensible values!!
# But you'll get a chance to play with them soon in a quiz 
margin = 80.0
left_bottom = [0, ysize]
right_bottom = [xsize, ysize]
Ejemplo n.º 7
0
HSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
H, S, V = cv2.split(HSV)
Lower = np.array([0, 15, 50])
Upper = np.array([255, 255, 255])
mask = cv2.inRange(HSV, Lower, Upper)
cv2.imshow("HSV", mask)

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5), (-1, -1))
kernel2 = cv2.getStructuringElement(cv2.MORPH_RECT, (19, 19), (-1, -1))
erode = cv2.erode(mask, kernel)
cv2.imshow("erode", erode)
dilate = cv2.dilate(erode, kernel2)
cv2.imshow("dilate", dilate)

canny = cv2.Canny(dilate, 3, 9, 3)
cv2.imshow("canny", canny)

gblur = cv2.GaussianBlur(canny, (3, 3), 4, 4)
cv2.imshow("guassianBlur", gblur)

lines = cv2.HoughLines(gblur, 1, np.pi / 180, 100, 0, 0)
result = img.copy()
cv2.waitKey()
for line in lines:
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a * rho
    y0 = b * rho
    x1 = int(x0 + 1000 * (-b))
Ejemplo n.º 8
0
def adjust_settings(cap, image_settings):
    cv2.namedWindow("Ventana")
    cv2.resizeWindow("Ventana", 500, 200)

    #Sliders para ajuste del tamanio del area de trabajo para recortar cosas
    #por fuera del plato. Estos objetos meten ruido en la deteccion
    cv2.createTrackbar("Xmax", "Ventana", 519, 640, empty)
    cv2.createTrackbar("Xmin", "Ventana", 112, 640, empty)
    cv2.createTrackbar("Ymax", "Ventana", 420, 480, empty)
    cv2.createTrackbar("Ymin", "Ventana", 87, 480, empty)

    #Umbrales de deteccion de contorno utilizados en Canny
    cv2.namedWindow("Umbrales")
    cv2.resizeWindow("Umbrales", 500, 150)
    cv2.createTrackbar("Umbral1", "Umbrales", 120, 500, empty)
    cv2.createTrackbar("Umbral2", "Umbrales", 315, 500, empty)

    #Umbral para comparacion de escala de grises
    #la idea es poner en negro todos los pixeles con luminocidad menor
    #a este umbral
    cv2.createTrackbar("Ugr", "Umbrales", 245, 255, empty)

    #Umbral de area (no esta en uso) buscaba un umbral minimo en un contorno para decir que es la pelota
    cv2.createTrackbar("Area", "Umbrales", 3000, 10000, empty)

    while (True):
        #obtencion de los valores de los sliders
        x_min = cv2.getTrackbarPos("Xmin", "Ventana")
        x_max = cv2.getTrackbarPos("Xmax", "Ventana")
        y_min = cv2.getTrackbarPos("Ymin", "Ventana")
        y_max = cv2.getTrackbarPos("Ymax", "Ventana")
        u_1 = cv2.getTrackbarPos("Umbral1", "Umbrales")
        u_2 = cv2.getTrackbarPos("Umbral2", "Umbrales")
        u_gris = cv2.getTrackbarPos("Ugr", "Umbrales")
        u_area = cv2.getTrackbarPos("Area", "Umbrales")
        u_area = 2000
        success, img = cap.read()
        #creo mascara llena de 0 para recortar imagen
        mask = np.zeros(img.shape[:2], dtype="uint8")
        #creo rectangulo para utilizar como mascara
        #esta mascara esta parametrizada con los slider para poder dejar afuera obstalucos
        cv2.rectangle(mask, (x_min, y_min), (x_max, y_max), 255, -1)
        #enmascaramos la imagen de video
        masked = cv2.bitwise_and(img, img, mask=mask)
        imagen_recortada = masked
        #invierto color a escala de grises
        invert = cv2.cvtColor(masked, cv2.COLOR_BGR2GRAY)

        # Lo que hace es normalizar la imagen en brillo para aprovechar todo el rango dinamico
        #no esta en uso, no aportaba mejoras significativas
        #aplico histograma
        #equ = cv2.equalizeHist(invert)
        #cv2.imshow('Ecualizadas', equ)
        #invert=equ

        #agrego mascara para detectar los blancos
        _, binarizada = cv2.threshold(invert, u_gris, 255, cv2.THRESH_BINARY)
        #detecto contornos
        canny = cv2.Canny(binarizada, u_1, u_2)
        #dilato los contornos
        canny = cv2.dilate(canny, None, iterations=1)
        #supresion de sombras
        #_,sombra=cv2.threshold(canny,254,255,cv2.THRESH_BINARY)

        #obtengo los contornos
        #podemos probar otros algoritmos de deteccion de contornos
        contornos, _ = cv2.findContours(canny, cv2.RETR_EXTERNAL,
                                        cv2.CHAIN_APPROX_NONE)

        cv2.imshow("Camara", img)
        cv2.imshow("Canny", canny)
        cv2.imshow("Imagen Recortada", imagen_recortada)

        if cv2.waitKey(1) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break
    return x_min, x_max, y_min, y_max, u_1, u_2, u_gris, u_area
Ejemplo n.º 9
0
def canny(frame):
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    canny = cv2.Canny(gray, 50, 150)
    return canny
Ejemplo n.º 10
0
def line_image(image, canny_threshold1=0, canny_threshold2=0,
        hough_threshold=2, min_line_length=3, max_gap=5, rho=2.0, theta=.3):

    #Read images, flip them vertically, and convert them to RGB color order
    #img_all = np.array(cv2.cvtColor(cv2.imread(images), cv2.COLOR_BGR2RGB))
    img = np.array(image[582:, :])
    #print(img_all[:, :, :] > [100, 0, 0])
    #img_all = img_all[:, :] > [125, 125, 125]
    #img_all = img_all[:, :, :] - 100
    #img_all = np.array([img[:, :] for img in img_all])
    #new_img = list(img_all[0])
    #print('ALL: ', img_all[0])
    #for i1, v1 in enumerate(new_img):
    #    for i2, v2 in enumerate(v1):
            #print(pixel)
    #        if (v2[1] < 125 and v2[2] < 125) or v2[0] > 100:
    #            new_img[i1][i2] = [0, 0, 0]
            #pass
    #new_img = np.array([new_img])
    #print('NEW: ', new_img[0])
    #return new_img[0]

    #find image dimensions
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

    lower_yellow = np.array([0, 100, 100])
    upper_yellow = np.array([70, 255, 255])
    #upper_yellow = np.array([70, 100, 100])

    mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
    res = cv2.bitwise_and(img, img, mask=mask)
    gray_arr = np.array(cv2.cvtColor(res, cv2.COLOR_BGR2GRAY))

    #blur images to avoid recognizing small lines
    blur_arr = np.array(cv2.blur(gray_arr,(1,1)))
    #imshow(blur_arr[0])
    #return blur_arr[0]
    #blur_arr = gray_arr
    #use canny threshold to find edges of shapes

    canny_arr = np.array(cv2.Canny(blur_arr, canny_threshold1, canny_threshold2))

    #return cv2.cvtColor(canny_arr,cv2.COLOR_GRAY2RGB)
    line_arr = []
    line_coord_arr = []
    line_count = 0
    lines = cv2.HoughLinesP(canny_arr, rho, theta, hough_threshold,
        min_line_length, max_gap)
    if lines is not None:
        h = len(img)
        w = len(img[0])
        minX, minY, maxX, maxY = lines[0][0]
        lines = np.array(lines).reshape(-1, 4)
        #print(lines)
        for line in lines:
            x1, y1, x2, y2 = line
            if(x1 > (w - (3.5*y1) - 1200) and (x1 < w - (1*y1) - 800) and
               x2 > (w - (3.5*y2) - 1200) and (x2 < w - (1*y2) - 800) and
               x2 < w/2 + 50 and y2 > 100):
                if y1 > minY or (y1 == minY and x1 > minX):
                    minY = y1
                    minX = x1
                if y2 > minY or (y2 == minY and x2 > minX):
                    minY = y2
                    minX = x2
                if x1 > maxX:
                    maxY = y1
                    maxX = x1
                if x2 > maxX:
                    maxY = y2
                    maxX = x2
                #cv2.line(img, (x1,y1),(x2,y2),(255,0,255),2)
            line_count += 1
        cv2.line(img, (minX,minY),(maxX,maxY),(0,255,0),2)
        slopeY = (maxY-minY)
        slopeX = (maxX-minX)
        slope = slopeY/slopeX
        #cv2.line(img, (w//2,h),(int((w//2) - slopeX),int (h - slopeY)),(0,0,255),2)
        lineX2 = w//2
        if slope != 0 and not math.isnan(slope):
            lineX2 = int((minX - minY/slope))
        cv2.line(img, (w//2,h),(lineX2,0),(0,0,255),2)
        value = (lineX2 - w/2)/w
        print(value)

    return img
Ejemplo n.º 11
0
def readVideo(champions, path, threshold, second_inicial, frame_step,
              frame_stop, json_path):

    title = "threshold-" + str(threshold) + "_Si-" + str(second_inicial)
    root_path = json_path.split("target")
    champions_img = getChampions(champions,
                                 root_path[0] + "src/main/resources/img/")
    progress = int((frame_stop - (second_inicial * 30)) / 10)
    print(progress)
    champions_dict = {}
    for name in champions:
        champions_dict[name] = []
        #¿?¿?
        champions_dict[name].append(None)

    h_champ, w_champ = champions_img[0].shape

    video_rgb = cv2.VideoCapture(path)
    video_rgb.set(cv2.CAP_PROP_POS_FRAMES, int((second_inicial * 30)))

    # select portion image
    _, frame = video_rgb.read()
    h = frame.shape[0]
    w = frame.shape[1]
    h1 = int(h - h / 4)
    w1 = int(w - w / 7)

    frame = frame[h1:h, w1:w]
    h1_peq = int(frame.shape[0] / 5)
    w1_peq = int(frame.shape[0] / 5)

    fram_pos = 0
    while (video_rgb.isOpened()):

        ret, frame = video_rgb.read()

        if ret:
            if (fram_pos % progress == 0):
                print(str(fram_pos * 10 / progress), "% leido", flush=True)
            if (fram_pos % frame_step == 0):
                if (fram_pos < frame_stop):

                    # crop map area
                    frame = frame[h1:h, w1:w]
                    # frame transformation
                    frame = cv2.GaussianBlur(frame, (5, 5), 0)
                    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                    frame = cv2.Canny(frame, 50, 100, True)

                    i = 0
                    for champ in (champions_img):
                        # frame_compare = cv2.subtract(frame_canny,start)
                        try:
                            peqframe = frame[
                                champions_dict[champions[i]][-1][0] -
                                h1_peq:champions_dict[champions[i]][-1][0] +
                                h1_peq, champions_dict[champions[i]][-1][1] -
                                w1_peq:champions_dict[champions[i]][-1][1] +
                                w1_peq]
                            res = cv2.matchTemplate(peqframe, champ,
                                                    cv2.TM_CCOEFF_NORMED)
                            _, max_val, _, max_loc = cv2.minMaxLoc(res)
                            if (max_val > threshold):
                                champions_dict[champions[i]].append([
                                    max_loc[0] + int(w_champ / 2),
                                    max_loc[1] + int(h_champ / 2)
                                ])
                            else:
                                res = cv2.matchTemplate(
                                    frame, champ, cv2.TM_CCOEFF_NORMED)
                                _, max_val, _, max_loc = cv2.minMaxLoc(res)
                                if (max_val > threshold):
                                    champions_dict[champions[i]].append([
                                        max_loc[0] + int(w_champ / 2),
                                        max_loc[1] + int(h_champ / 2)
                                    ])
                                else:
                                    champions_dict[champions[i]].append(None)

                        except:

                            res = cv2.matchTemplate(frame, champ,
                                                    cv2.TM_CCOEFF_NORMED)
                            _, max_val, _, max_loc = cv2.minMaxLoc(res)
                            if (max_val > threshold):
                                champions_dict[champions[i]].append([
                                    max_loc[0] + int(w_champ / 2),
                                    max_loc[1] + int(h_champ / 2)
                                ])
                            else:
                                champions_dict[champions[i]].append(None)

                        i += 1
                    i = 0
                else:
                    champions_dict["0frameStep"] = frame_step
                    champions_dict["0seg,f_step,f_stop"] = [
                        second_inicial, frame_step, frame_stop
                    ]
                    writeJSON(json_path, title, champions_dict)
                    return 1

            fram_pos += 1
        else:
            break
    champions_dict["0frameStep"] = frame_step
    champions_dict["0seg,f_step,f_stop"] = [
        second_inicial, frame_step, frame_stop
    ]
    writeJSON(json_path, title, champions_dict)
from scipy.spatial import distance as dist
import scipy.misc
from imutils import perspective
from imutils import contours
import numpy as np
import argparse
import imutils
import cv2
import scipy.ndimage
 
#####################
image = cv2.imread("IMG_0067.JPG", cv2.IMREAD_UNCHANGED);
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#gray = cv2.GaussianBlur(gray, (7, 7), 0)

edges = cv2.Canny(gray, 20, 80)
scipy.misc.imsave('edge5.jpg', edges)

edges2 = scipy.ndimage.binary_dilation(edges).astype(edges.dtype)
edges2 = scipy.ndimage.binary_erosion(edges).astype(edges.dtype)
scipy.misc.imsave('edge6.jpg', edges2)

ret, thresh = cv2.threshold(edges, 127, 255, 0)
contour, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
d = cv2.drawContours(gray, contours, -1, (0,255,0), 3)
scipy.misc.imsave('d.jpg', d)

binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
ret,thresh = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)

scipy.misc.imsave('outfile.jpg', gray)
    def chambai(self):
        for i in range(len(self.file1)):
            self.anh = self.file1[i]
            # self.hx = cv2.cvtColor(self.img1, cv2.COLOR_BGR2GRAY)
            # self.hm = cv2.GaussianBlur(self.hx, (5,5),0)
            # self.hc = cv2.Canny(self.hm, 75, 200)

            self.can1 = Canvas(self.root, width=2000, height=2000)
            self.can1.place(x=870, y=80)
            self.mn = cv2.imread(self.anh)

            self.hx = cv2.cvtColor(self.mn, cv2.COLOR_BGR2GRAY)
            self.hm = cv2.GaussianBlur(self.hx, (5, 5), 0)
            self.hc = cv2.Canny(self.hm, 75, 200)

            self.khungbt = cv2.findContours(self.hc.copy(), cv2.RETR_EXTERNAL,
                                            cv2.CHAIN_APPROX_SIMPLE)
            self.khungbt = imutils.grab_contours(self.khungbt)
            self.khung = None
            self.khung = self.timkhung(self.khungbt)

            self.baithi = four_point_transform(self.mn,
                                               self.khung.reshape(4, 2))

            #------
            self.khungtln = self.timkhungcham(self.baithi)
            self.khung1n = self.timo1(self.khungtln, 0)
            self.baithi = four_point_transform(self.baithi,
                                               self.khung1n.reshape(4, 2))
            #---
            self.baithi = self.baithi[20:self.baithi.shape[0] - 20,
                                      20:self.baithi.shape[1] - 20]

            #XOAY BAI THI
            self.phantren = self.baithi[0:self.baithi.shape[0] / 34,
                                        0:self.baithi.shape[1]]
            self.row, self.col, self.cha = self.baithi.shape

            self.dem1 = 0
            for i in range(self.phantren.shape[0]):
                for j in range(self.phantren.shape[1]):
                    if self.phantren[i, j, 0] < 100:
                        self.dem1 = self.dem1 + 1
            #print self.dem1
            if self.dem1 < 1000:
                self.dem2 = 0
                self.benphai = self.baithi[0:self.baithi.shape[0],
                                           0:self.baithi.shape[1] / 34]
                for i in range(self.benphai.shape[0]):
                    for j in range(self.benphai.shape[1]):
                        if self.benphai[i, j, 0] < 150:
                            self.dem2 = self.dem2 + 1
                #print self.dem2
                if self.dem2 < 1000:
                    self.dem3 = 0
                    self.bentrai = self.baithi[0:self.baithi.shape[0],
                                               self.baithi.shape[1] -
                                               self.baithi.shape[1] /
                                               34:self.baithi.shape[1]]
                    for i in range(self.bentrai.shape[0]):
                        for j in range(self.bentrai.shape[1]):
                            if self.bentrai[i, j, 0] < 50:
                                self.dem3 = self.dem3 + 1
                    #print self.dem3
                    if self.dem3 < 1000:
                        self.r = cv2.getRotationMatrix2D(
                            (self.col / 2, self.row / 2), 180, 1)
                        self.baithi = cv2.warpAffine(self.baithi, self.r,
                                                     (self.col, self.row))
                    else:
                        self.r = cv2.getRotationMatrix2D(
                            (self.col / 2, self.row / 1.488), 90, 1)
                        self.baithi = cv2.warpAffine(self.baithi, self.r,
                                                     (self.row, self.col))
                else:
                    self.r = cv2.getRotationMatrix2D(
                        (self.col / 2.525, self.row / 2), -90, 1)
                    self.baithi = cv2.warpAffine(self.baithi, self.r,
                                                 (self.row, self.col))

            #NHAN DANG SO CAU HOI

            self.nhandang = self.baithi[1:self.row / 20, 0:self.col]
            self.khungdang = self.chuyendoi(self.nhandang)
            self.khungnhandang = self.timkhung(self.khungdang)
            self.nhandang = four_point_transform(
                self.nhandang, self.khungnhandang.reshape(4, 2))
            self.nhandang = self.nhandang[6:self.nhandang.shape[0] - 6,
                                          6:self.nhandang.shape[1] - 6]

            self.phunhandang = cv2.cvtColor(self.nhandang, cv2.COLOR_BGR2GRAY)
            self.thresh0 = cv2.threshold(
                self.phunhandang, 0, 255,
                cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
            self.tlkhung0 = cv2.findContours(self.thresh0.copy(),
                                             cv2.RETR_EXTERNAL,
                                             cv2.CHAIN_APPROX_SIMPLE)
            self.tlkhung0 = imutils.grab_contours(self.tlkhung0)
            self.n = self.tam(self.tlkhung0, self.thresh0)
            p = 0
            if self.n == 1:
                p = 10
            else:
                if self.n == 2:
                    p = 15
                else:
                    p = 20

            dung = 0
            socauhoi = 0
            #ANSWER_KEY = {0:0,1:1,2:2,3:2,4:1,5:1,6:1,7:0,8:0,9:2,10: 0, 11: 0, 12: 1, 13: 2, 14: 2, 15: 1, 16: 1, 17: 1, 18: 1, 19: 1}

            self.khungtl = self.timkhungcham(self.baithi)
            self.khung1 = self.timo1(self.khungtl, 0)
            self.khung2 = self.timo1(self.khungtl, 2)

            #self.o1 = four_point_transform(self.baithi, self.khung1.reshape(4, 2))
            self.toado1 = self.khung1[0][0]
            self.d1 = (self.toado1[0] + self.toado1[1]) / 2

            for o in range(4):
                if ((self.khung1[o][0][0] + self.khung1[o][0][1]) / 2 <
                        self.d1):
                    self.toado1 = self.khung1[o][0]
                    self.d1 = (self.toado1[0] + self.toado1[1]) / 2
            self.toado2 = self.khung2[0][0]
            self.d2 = (self.toado2[0] + self.toado2[1]) / 2
            for o in range(4):
                if ((self.khung2[o][0][0] + self.khung2[o][0][1]) / 2 <
                        self.d2):
                    self.toado2 = self.khung2[o][0]
                    self.d2 = (self.toado2[0] + self.toado2[1]) / 2
            if (self.d1 > self.d2):
                self.tamp1 = self.khung1
                self.tamp2 = self.khung2
                self.toado = self.toado1
                self.toado1 = self.toado2
                self.toado2 = self.toado
            else:
                self.tamp1 = self.khung2
                self.tamp2 = self.khung1

            self.o1 = four_point_transform(self.baithi,
                                           self.tamp2.reshape(4, 2))
            self.o1 = self.o1[5:self.o1.shape[0] - 5, 5:self.o1.shape[1] - 5]
            self.phukhung1 = cv2.cvtColor(self.o1, cv2.COLOR_BGR2GRAY)
            self.thresh1 = cv2.threshold(
                self.phukhung1, 0, 255,
                cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
            self.tlkhung1 = cv2.findContours(self.thresh1.copy(),
                                             cv2.RETR_EXTERNAL,
                                             cv2.CHAIN_APPROX_SIMPLE)
            self.tlkhung1 = imutils.grab_contours(self.tlkhung1)

            cautraloi1 = []
            for f in self.tlkhung1:
                (x, y, w, h) = cv2.boundingRect(f)
                ar = w / float(h)
                if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
                    cautraloi1.append(f)

            cautraloi1 = contours.sort_contours(cautraloi1,
                                                method="top-to-bottom")[0]

            for (q, i) in enumerate(np.arange(0, len(cautraloi1), 4)):
                cautraloisx1 = contours.sort_contours(cautraloi1[i:i + 4])[0]
                bubbled1 = None

                for (j, c) in enumerate(cautraloisx1):
                    matna1 = np.zeros(self.thresh1.shape, dtype="uint8")
                    cv2.drawContours(matna1, [c], -1, 255, -1)

                    matna1 = cv2.bitwise_and(self.thresh1,
                                             self.thresh1,
                                             mask=matna1)
                    tong1 = cv2.countNonZero(matna1)

                    if bubbled1 is None or tong1 > bubbled1[0]:
                        bubbled1 = (tong1, j)
                color = (255, 0, 0)
                k = self.ANSWER_KEY[q]

                if k == bubbled1[1]:
                    color = (0, 255, 0)
                    dung += 1

                cv2.drawContours(self.o1, [cautraloisx1[k]], -1, color, 3)

            self.baithi[self.toado1[1] + 5:self.toado1[1] + self.o1.shape[0] +
                        5, self.toado1[0] + 5:self.toado1[0] +
                        self.o1.shape[1] + 5] = self.o1

            self.o2 = four_point_transform(self.baithi,
                                           self.tamp1.reshape(4, 2))
            self.o2 = self.o2[5:self.o2.shape[0] - 5, 5:self.o2.shape[1] - 5]
            self.phukhung2 = cv2.cvtColor(self.o2, cv2.COLOR_BGR2GRAY)
            self.thresh2 = cv2.threshold(
                self.phukhung2, 0, 255,
                cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
            self.tlkhung2 = cv2.findContours(self.thresh2.copy(),
                                             cv2.RETR_EXTERNAL,
                                             cv2.CHAIN_APPROX_SIMPLE)
            self.tlkhung2 = imutils.grab_contours(self.tlkhung2)

            cautraloi2 = []
            for f in self.tlkhung2:
                (x, y, w, h) = cv2.boundingRect(f)
                ar = w / float(h)
                if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
                    cautraloi2.append(f)

            cautraloi2 = contours.sort_contours(cautraloi2,
                                                method="top-to-bottom")[0]

            for (q, i) in enumerate(np.arange(0, len(cautraloi2), 4)):
                cautraloisx2 = contours.sort_contours(cautraloi2[i:i + 4])[0]
                bubbled2 = None

                for (j, c) in enumerate(cautraloisx2):
                    matna2 = np.zeros(self.thresh2.shape, dtype="uint8")
                    cv2.drawContours(matna2, [c], -1, 255, -1)

                    matna2 = cv2.bitwise_and(self.thresh2,
                                             self.thresh2,
                                             mask=matna2)
                    tong2 = cv2.countNonZero(matna2)

                    if bubbled2 is None or tong2 > bubbled2[0]:
                        bubbled2 = (tong2, j)
                color = (255, 0, 0)
                k = self.ANSWER_KEY[p + q]

                if k == bubbled2[1]:
                    color = (0, 255, 0)
                    dung += 1

                cv2.drawContours(self.o2, [cautraloisx2[k]], -1, color, 3)

            self.baithi[self.toado2[1] + 5:self.toado2[1] + self.o2.shape[0] +
                        5, self.toado2[0] + 5:self.toado2[0] +
                        self.o2.shape[1] + 5] = self.o2

            #print dung

            # NHAN DANG MSSV
            self.khung3 = self.timo1(self.khungtl, 8)
            self.o3 = four_point_transform(self.baithi,
                                           self.khung3.reshape(4, 2))
            p = cv2.getRotationMatrix2D(
                (self.o3.shape[0] / 2, self.o3.shape[1] / 1.52), -90, 1)
            self.o3 = cv2.warpAffine(self.o3, p,
                                     (self.o3.shape[0], self.o3.shape[1]))
            self.o3 = self.o3[5:self.o3.shape[0] - 5, 5:self.o3.shape[1] - 5]
            self.phukhung3 = cv2.cvtColor(self.o3, cv2.COLOR_BGR2GRAY)
            self.thresh3 = cv2.threshold(
                self.phukhung3, 0, 255,
                cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
            self.tlkhung3 = cv2.findContours(self.thresh3.copy(),
                                             cv2.RETR_EXTERNAL,
                                             cv2.CHAIN_APPROX_SIMPLE)
            self.tlkhung3 = imutils.grab_contours(self.tlkhung3)
            cautraloi3 = []
            for f in self.tlkhung3:
                (x, y, w, h) = cv2.boundingRect(f)
                ar = w / float(h)
                if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
                    cautraloi3.append(f)

            cautraloi3 = contours.sort_contours(cautraloi3,
                                                method="top-to-bottom")[0]
            mssv = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0}
            for (q, i) in enumerate(np.arange(0, len(cautraloi3), 10)):
                cautraloisx3 = contours.sort_contours(cautraloi3[i:i + 10])[0]
                bubbled3 = None

                for (j, c) in enumerate(cautraloisx3):
                    matna3 = np.zeros(self.thresh3.shape, dtype="uint8")
                    cv2.drawContours(matna3, [c], -1, 255, -1)

                    matna3 = cv2.bitwise_and(self.thresh3,
                                             self.thresh3,
                                             mask=matna3)
                    tong3 = cv2.countNonZero(matna3)

                    if bubbled3 is None or tong3 > bubbled3[0]:
                        bubbled3 = (tong3, j)
                mssv[q] = 9 - bubbled3[1]
            self.msv = mssv[0]
            for i in range(1, 7):
                self.msv = (self.msv * 10) + mssv[i]
            #print self.msv

            if self.n == 1:
                socauhoi = 20
            else:
                if self.n == 2:
                    socauhoi = 30
                else:
                    socauhoi = 40
            self.diem = float(dung * 10) / socauhoi
            #print self.diem
            cv2.putText(self.baithi, "{:.2f}".format(self.diem), (int(
                self.baithi.shape[0] / 2.5), int(self.baithi.shape[1] / 2.5)),
                        cv2.FONT_HERSHEY_SIMPLEX, 4, (255, 0, 0), 6)
            cv2.putText(self.baithi, "{:}".format(self.msv), (int(
                self.baithi.shape[0] / 4.5), int(self.baithi.shape[1] / 5.2)),
                        cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)

            #self.nhandang = imutils.resize(self.nhandang, height=50)
            self.baithi = imutils.resize(self.baithi, height=800)
            #self.o2 = imutils.resize(self.o2, height=800)
            self.im = PIL.ImageTk.PhotoImage(
                image=PIL.Image.fromarray(self.baithi))
            self.can1.create_image(5, 5, anchor=NW, image=self.im)

            self.luubaikt(self.baithi, self.msv)
            f = open("/home/doan/Desktop/Ketqua/result.txt", "a")
            f.write(
                str(self.msv) + "         " + str(self.diem) + "          " +
                str(self.date.strftime("%Y%m%d %H:%M:%S") + "\n"))
            f.close()
            self.done = Label(self.root, text="Done!").place(x=20, y=405)
Ejemplo n.º 14
0
import cv2
import numpy as np

cap=cv2.VideoCapture(0)

while True :
    _, frame = cap.read()

    laplacian = cv2.Laplacian(frame,cv2.CV_64F)
    sobelx = cv2.Sobel(frame,cv2.CV_64F,1,0,ksize=5)
    sobely = cv2.Sobel(frame,cv2.CV_64F,0,1,ksize=5)
    edges = cv2.Canny(frame,150,150)


    cv2.imshow('org',frame)
    cv2.imshow('lap',laplacian)
    cv2.imshow('sobelx',sobelx)
    cv2.imshow('sobely',sobely)
    cv2.imshow('canny',edges)
    

    




    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break

Ejemplo n.º 15
0
def canny(image):
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    blur = cv2.GaussianBlur(gray, (5, 5), 0)
    canny = cv2.Canny(blur, 50, 150)
    return canny
Ejemplo n.º 16
0
def threadJHLineTracer(cam_obj):
    MAX_VEL = 0.15

    f_list = [(-1, -1)]
    s_list = [(999, 999)]
    frame_count_w = frame_count_y = last_error = 0

    t = threading.currentThread()
    while getattr(t, "run", True):
        frame_count_w += 1
        frame_count_y += 1

        ret, orig_frame = cam_obj.get_line_frame()

        if not ret:
            break

        draw_temp = orig_frame.copy()
        cutting_img = draw_temp[360:, :]
        y_roi = draw_temp[360:, :250]
        w_roi = draw_temp[360:, 310:]

        M = np.ones(y_roi.shape, dtype="uint8") * 90
        y_roi = cv2.subtract(y_roi, M)

        min_lab = np.array([84, 110, 128])
        min_lab = np.array([195, 140, 220])

        # Convert the BGR image to other color spaces
        img_lab = cv2.cvtColor(y_roi, cv2.COLOR_BGR2LAB)
        img_lab = cv2.GaussianBlur(img_lab, (5, 5), 0)

        mask_lab_yellow = cv2.inRange(img_lab, min_lab, min_lab)
        mask_lab_yellow = cv2.erode(mask_lab_yellow, None, iterations=1)
        mask_lab_yellow = cv2.dilate(mask_lab_yellow, None, iterations=3)

        result_lab = cv2.bitwise_and(y_roi, y_roi, mask=mask_lab_yellow)
        edges = cv2.Canny(result_lab, 75, 150)
        #         # cv2.imshow('yellow edges', edges)

        lines = cv2.HoughLinesP(edges, 1, np.pi / 360, 50, 10, maxLineGap=150)

        if lines is not None:
            del f_list[:]
            for line in lines:
                x1, y1, x2, y2 = line[0]
                f_list.append((x1, y1))
                f_list.append((x2, y2))
            cv2.circle(y_roi, max(f_list), 10, (0, 0, 255), -1)
            cv2.line(y_roi, (x1, y1), (x2, y2), (0, 255, 0), 4)

        # if frame_count_y > 5:
        #    del f_list[:]
        #    f_list.append((0,1))

        M1 = np.ones(w_roi.shape, dtype="uint8") * 90
        w_roi = cv2.subtract(w_roi, M1)
        min_lab = np.array([89, 112, 104])
        min_lab = np.array([198, 142, 137])

        img_lab = cv2.cvtColor(w_roi, cv2.COLOR_BGR2LAB)
        img_lab = cv2.GaussianBlur(img_lab, (5, 5), 0)

        mask_lab_white = cv2.inRange(img_lab, min_lab, min_lab)
        mask_lab_white = cv2.erode(mask_lab_white, None, iterations=1)
        mask_lab_white = cv2.dilate(mask_lab_white, None, iterations=3)

        result_lab1 = cv2.bitwise_and(w_roi, w_roi, mask=mask_lab_white)
        edges = cv2.Canny(result_lab1, 75, 150)
        # cv2.imshow('white edges', edges)
        lines = cv2.HoughLinesP(edges, 1, np.pi / 360, 50, 10, maxLineGap=150)

        if lines is not None:
            del s_list[:]
            for line in lines:
                x1, y1, x2, y2 = line[0]
                s_list.append((x1 + 310, y1))
                s_list.append((x2 + 310, y2))

            (c_x, c_y) = min(s_list)
            cv2.circle(w_roi, (c_x - 310, c_y), 10, (255, 255, 0), -1)
            cv2.line(w_roi, (x1, y1), (x2, y2), (0, 0, 255), 4)

        # if frame_count_w > 5:
        #    del s_list[:]
        #    s_list.append((640,1))
        # cv2.line(frame, ((w_x1+y_x1)//2, (w_y1+y_y1)//2),((w_x2+y_x2)//2,(y_y2+w_y2)//2),(0, 255, 255), 4)
        (x1, y1) = min(s_list)
        (x2, y2) = max(f_list)

        # if(x1 >= x2):
        #   x2 = 120
        if (310 < x1 < 340) and (220 < x2 < 250):
            if y1 > y2:
                x1 = 550
            elif y1 < y2:
                x2 = 100
        # print('y;', x2)
        # print('w:', x1)
        ave = (x1 + x2) // 2

        cv2.circle(cutting_img, ((x1 + x2) // 2, (y1 + y2) // 2), 10,
                   (200, 0, 25), -1)
        # cv2.imshow("frame", cutting_img)
        # cv2.imshow('yroi', y_roi)
        # cv2.imshow('wroi', w_roi)

        #         # print("s_list : ", min(s_list))
        error = ave - 300
        # print(error)
        # # print(error, " error")
        ros_kp = 0.0055
        ros_kd = 0.0075
        #         # print(error)
        angular_z = ros_kp * error + ros_kd * (error - last_error)
        #         # print(angular_z, "is angular_z")
        last_error = error
        linear_x = min(MAX_VEL * ((1 - abs(error) / 500)**2.2), 0.2)
        #         # #print(linear_x, " is linear_x")
        angular_z = -min(angular_z, 2.0) if angular_z < 0 else -max(
            angular_z, -2.0)
        #         # print(angular_z, " is twist angular_z")

        # pub_linear.publish(linear_x)
        # pub_angular.publish(angular_z)

        #         # print(draw_temp.shape)
        t_move(linear_x, angular_z)

        if chr(cv2.waitKey(1) & 255) == 'q':
            t_move(0, 0)
            break
        pass

    t_move(0, 0)
    pass
Ejemplo n.º 17
0
 def auto_canny(image):
     lower = 100
     upper = 200
     edged = cv2.Canny(image, lower, upper)
     # return the edged image
     return edged
    Parado Sulca Yurgen
    Rodriguez Manuelo Jhoelver
"""
import cv2
"""
Se lee la imagen del directorio del proyecto
"""
imagen=cv2.imread('figuras.png')
"""
Se modifican los colores de la imagen a escala de grises
"""
grises=cv2.cvtColor(imagen, cv2.COLOR_BGR2GRAY)
"""
Se binariza la imagen con la función canny
"""
bordesAislados=cv2.Canny(grises, 100, 150)
"""
Se le aplica dilatación y erosión a la imagen para facilitar su identificación
"""
bordesAislados=cv2.dilate(bordesAislados, None, iterations=1)
bordesAislados=cv2.erode(bordesAislados, None, iterations=1)
"""
Se encuentran los contornos externos de la imagen binarizada con la función findcontours

Parámetros:imagen a procesar, modo de recuperación, método de almacenamiento
"""
contornos,_=cv2.findContours(bordesAislados, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
"""
Se inicia un bucle para poder trabajar con los pixeles
"""
for i in contornos:
Ejemplo n.º 19
0
import cv2 as cv
import matplotlib.pyplot as plt
import numpy as np

img = cv.imread('images/sudoku.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
edges = cv.Canny(gray, 50, 150, apertureSize=3)

lines = cv.HoughLines(edges, 1, np.pi / 180, 200)

for line in lines:
    rho, theta = line[0]
    a = np.cos(theta)
    b = np.sin(theta)

    x0 = a * rho
    y0 = b * rho

    # x1 stores the rounded off value of (r * cos(theta) - 1000 * sin(theta))
    x1 = int(x0 + 1000 * (-b))

    # y1 stores the rounded off value of (r * sin(theta)+ 1000 * cos(theta))
    y1 = int(y0 + 1000 * (a))

    # x2 stores the rounded off value of (r * cos(theta)+ 1000 * sin(theta))
    x2 = int(x0 - 1000 * (-b))

    # y2 stores the rounded off value of (r * sin(theta)- 1000 * cos(theta))
    y2 = int(y0 - 1000 * (a))
    cv.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
Ejemplo n.º 20
0
def ImagProgressHSV(filename, flag, flag2):
    """
    处理图片,进行阈值化。

    :param filename: 图片一张,由getImag函数获得
    :param flag: “ball”为处理球,进行霍夫圆变换,“hole”为处理球门,生成外接矩形
    :param flag2: 0为上摄像头传回来的图片,1为下摄像头传回来的图片
    :return: 两个元素的数组,球返回球心的x,y坐标。球洞返回矩形的下边中心x,y坐标,frame黑白图一张,供遍历像素函数使用
    """

    Image = filename
    # Image = cv.imread(filename)
    # 得到图片,搞高斯滤波+色彩转换
    # cv.namedWindow('test', cv.WINDOW_NORMAL)
    Image_Gau = cv.GaussianBlur(Image, (9, 9), 0)
    Image_HSV = cv.cvtColor(Image_Gau, cv.COLOR_BGR2HSV)
    # print Image_HSV[180, 180]
    # HSV阈值设定
    lowarrayball = np.array([150, 43, 46])
    higharrayball = np.array(
        [180, 255, 255])  # 此处使用反向思维,直接允许红色之外的所有值通过,红色部分为黑色,在识别下摄像头时效果不错

    lowarrayhole = np.array([100, 43, 46])
    higharrayhole = np.array([124, 255, 255])  # 青色+蓝色
    # lowarraydark = np.array([0, 43, 46])
    # higharraydark = np.array([10, 255, 255])
    #  二值化
    dstball = cv.inRange(Image_HSV, lowarrayball, higharrayball)
    dsthole = cv.inRange(Image_HSV, lowarrayhole, higharrayhole)
    # dstdark = cv.inRange(Image_HSV, lowarraydark, higharraydark)
    # 中值滤波降噪,开运算降噪
    MedirImagball = cv.medianBlur(dstball, 3)
    MedirImaghole = cv.medianBlur(dsthole, 3)
    element = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
    MedirImagball = cv.morphologyEx(MedirImagball, cv.MORPH_OPEN, element)
    MedirImaghole = cv.morphologyEx(MedirImaghole, cv.MORPH_OPEN, element)
    cv.imshow('mediaball', MedirImagball)
    cv.imshow('mediahole', MedirImaghole)
    resultball = cv.Canny(MedirImagball, 50, 150)
    resulthole = cv.Canny(MedirImaghole, 50, 150)
    # cv.imshow('canny', result)
    # MedirImagdark = cv.medianBlur(dstdark, 9)
    # element = cv.getStructuringElement(cv.MORPH_RECT, (13, 13))
    # MedirImagdark = cv.morphologyEx(MedirImagdark, cv.MORPH_OPEN, element)
    # cv.imshow('testdark', MedirImag)
    # dark = cv.addWeighted(MedirImagdark, 0.5, MedirImag, 0.5, 0)
    # cv.imshow('add', dark)
    # 霍夫变换检测圆心cv.waitKey(0)
    # if flag == 'ball':
    #     circles = cv.HoughCircles(result, cv.HOUGH_GRADIENT, 1, 60, param1=1, param2=5, minRadius=1, maxRadius=20)
    #     # 参数4是圆心距离,param2是v2.HOUGH_GRADIENT方法的累加器阈值。阈值越小,检测到的圈子越多。
    #     # print circles
    #     i = 0
    #     for ci in circles[0]:
    #         i += 1
    #     if i != 1:
    #         for circle in circles[0]:
    #             if judgecircle(Image, circle):
    #                 circleflag = circle
    #     else:
    #         circleflag = circles[0]
    #     print circleflag
    #     x = int(circleflag[0][0])
    #     y = int(circleflag[0][1])
    #     r = int(circleflag[0][2])
    #     result = cv.circle(result, (x, y), r, (255, 255, 255), 1)
    #     result = cv.circle(result, (x, y), 2, (255, 255, 255), -1)
    #     data = [x, y]
    # if flag == 'hole':
    #     x, y, w, h = cv.boundingRect(result)
    #     cv.rectangle(result, (x, y), (x + w, y + h), (255, 255, 255), 2)
    #     data = [x + w / 2, y + h]
    # # print data
    # cv.imshow('test', result)
    # TODO 此处的try希望能够在没有检测到园的时候不让程序崩溃,并且希望能返回一个值用于目标是否存在的检测
    try:
        circles = cv.HoughCircles(resultball,
                                  cv.HOUGH_GRADIENT,
                                  1,
                                  60,
                                  param1=1,
                                  param2=5,
                                  minRadius=10,
                                  maxRadius=50)
        # 参数4是圆心距离,param2是v2.HOUGH_GRADIENT方法的累加器阈值。阈值越小,检测到的圈子越多。
        # print circles
        for circle in circles[0]:
            x = int(circle[0])
            y = int(circle[1])
            r = int(circle[2])
            Imag1 = cv.circle(Image, (x, y), r, (0, 255, 0), 1)
            result = cv.circle(Imag1, (x, y), 2, (0, 255, 0), -1)
        databall = [x, y]
    except TypeError:
        print 'NULL NULL NULL NULL NULL NULL NULL'
    try:
        x, y, w, h = cv.boundingRect(resulthole)
        cv.rectangle(Image, (x, y), (x + w, y + h), (0, 255, 0), 2)
        result = Image
        datahole = [x + w / 2, y + h]
    except TypeError:
        print 'NULL NULL NULL NULL NULL NULL NULL'
    # print data
    cv.imshow('test', result)
    try:
        data = [databall, datahole]
        return data, MedirImagball
    except UnboundLocalError:
        print 'NULL NULL NULL NULL NULL NULL NULL'
        return [[0, 0], [0, 0]], MedirImagball
"""
cv2.HoughLines():
    参数一:二值化图像,或者Canny边缘检测。
    参数二:距离精度
    参数三:弧度精度
    参数四:阈值。

"""

import cv2
import numpy as np

img = cv2.imread("./image/form.jpg")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(blur, 50, 150, apertureSize=3)

lines = cv2.HoughLines(edges, 1, np.pi / 180, 200)
for i in range(len(lines)):  # 将所有线全部标出。
    for rho, theta in lines[i]:
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        x1 = int(x0 + 1000 * (-b))
        y1 = int(y0 + 1000 * (a))
        x2 = int(x0 - 1000 * (-b))
        y2 = int(y0 - 1000 * (a))

        cv2.line(img, (x1, y1), (x2, y2), (255, 0, 0), 3)
Ejemplo n.º 22
0
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
    help="path to the input image")
args = vars(ap.parse_args())

# define the answer key which maps the question number
# to the correct answer
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}

# load the image, convert it to grayscale, blur it
# slightly, then find edges
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 75, 200)

# find contours in the edge map, then initialize
# the contour that corresponds to the document
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
    cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
docCnt = None

# ensure that at least one contour was found
if len(cnts) > 0:
    # sort the contours according to their size in
    # descending order
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)

    # loop over the sorted contours
Ejemplo n.º 23
0
import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('c.jpg', 0)

edges = cv2.Canny(img, 100, 200)
plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(edges, cmap='gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
plt.show()
Ejemplo n.º 24
0
def draw_the_lines(img, lines):
    img=np.copy(img)
    blank_image=np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
    for line in lines:
        for x1,y1,x2,y2 in line:
            cv2.line(blank_image,(x1,y1), (x2,y2), (0,255,255), thickness=4)
    img= cv2.addWeighted(img, 0.8, blank_image, 1.0, 0.0)
    return img
image=cv2.imread("road_main.png")
image=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

print(image.shape)
height=image.shape[0]
width=image.shape[1]

region_of_interset_verticies=[
    (0, height),
    (width/2, height/2),
    (width, height)
]

gray_image=cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
canny_image=cv2.Canny(gray_image, 100, 200)
croped_image=region_of_interest(canny_image,np.array([region_of_interset_verticies], np.int32))

lins=cv2.HoughLinesP(croped_image, rho=6, theta=np.pi/60, threshold=160, lines=np.array([]), minLineLength=40, maxLineGap=25)

image_with_lines=draw_the_lines(image, lins)

plt.imshow(image_with_lines)
plt.show()
def _save_images(img, boxes, output_dir, prefix=""):
    # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # expected_width = 128
    # expected_height = 128
    # print(len(boxes))
    for i, bbox in enumerate(boxes):
        # print(b)
        # print("i value is",i)
        # print("bbox value is", bbox)
        l, t, r, b = bbox
        # print(l, t, r, b)
        # cv2.imshow("sdfds",bbox)
        chip = img[t:b, l:r]
        chipgray = cv2.cvtColor(chip, cv2.COLOR_BGR2GRAY)

        # cv2.imshow("chip", chip)
        # cv2.imshow("chipgray", chipgray)

        # cv2.waitKey(0)

        # print(chip.shape[0], chip.shape[1])
        # newimg=chip[0:100,100:200]

        # newimg=chip[t:b,l:r]
        # print(chip)
        # width, height = chip.shape[1], chip.shape[0]
        # print(width, height)
        # crop_width = expected_width if expected_width < chip.shape[1] else chip.shape[1]
        # crop_height = expected_height if expected_height < chip.shape[0] else chip.shape[0]
        # mid_x, mid_y = int(width/2), int(height/2)
        # cw2, ch2 = int(crop_width/2), int(crop_height/2)
        # cropped_image = chip[100:200, mid_x-cw2:mid_x+cw2]
        # a=cv2.imread()
        # print(chip.shape[0], chip.shape[1])

        # following line of code is for inverting the image while saving in the directory
        # newimage=chip[]
        chipblur = cv2.GaussianBlur(chipgray, (5, 5), 1)

        imgCanny = cv2.Canny(chipblur, 10, 250)

        # img_invert = cv2.bitwise_not(thresh)

        # cv2.imshow("threshimage",img_invert)
        # cv2.waitKey(0)
        # print(thresh)
        cnts, hierarchies = cv2.findContours(imgCanny, cv2.RETR_EXTERNAL,
                                             cv2.CHAIN_APPROX_SIMPLE)
        # idx = 0
        # cv2.imshow("cnts image is this ",cnts)
        # cv2.waitKey(0)
        for c in cnts:
            x, y, w, h = cv2.boundingRect(c)
            # print(x, y, w, h)
            # print(c)
            if w > 10 and h > 10:
                # idx += 1
                new_img = chip[y - 5:y + h + 5, x - 5:x + w + 5]
                img_resize = cv2.resize(new_img, (128, 128))

                gray_image = cv2.cvtColor(img_resize, cv2.COLOR_BGR2GRAY)

                ret, thresh = cv2.threshold(gray_image, 150, 255,
                                            cv2.THRESH_BINARY_INV)
                # img_resize = cv2.resize(new_img, (64, 64))

                # img_invert = cv2.bitwise_not(gray_image)
                kernel = np.ones((3, 3), np.uint8)
                img_dilated = cv2.dilate(thresh, kernel, iterations=1)

                cv2.imwrite(
                    os.path.join(output_dir, prefix + "_" + str(i) + ".jpg"),
                    img_dilated)
Ejemplo n.º 26
0
import cv2
import numpy as np

img = cv2.imread('hammer.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,120)
minLineLength = 20
maxLineGap = 5
lines = cv2.HoughLinesP(edges,1,np.pi/180,20,minLineLength,maxLineGap)
for x1,y1,x2,y2 in lines[0]:
  cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)

cv2.imshow("edges", edges)
cv2.imshow("lines", img)
cv2.waitKey()
cv2.destroyAllWindows()
Ejemplo n.º 27
0
# white to black there is slope change which is
#  detected with Laplacian and then this gradient
#  value is mapped for the opencv suitable image
#  value ( absolute since image pixel values can only be +ve)

lap = cv.Laplacian(gray, cv.CV_64F)
lap = np.uint8(np.absolute(lap))

# Sobel
# Sobel computes gradients in 2 dir

sobelx = cv.Sobel(gray, cv.CV_64F, 1, 0)
sobely = cv.Sobel(gray, cv.CV_64F, 0, 1)

cv.imshow('Sobel X', sobelx)
cv.imshow('Sobel y', sobely)

# Combined sobel images

combines_sobel = cv.bitwise_or(sobelx, sobely)

cv.imshow('Combine', combines_sobel)

# Canny
# Advanced algorithm, it uses sobel inside  aaayyy

canny = cv.Canny(gray, 150, 175)

cv.imshow("canny", canny)
cv.waitKey(0)
Ejemplo n.º 28
0
    def forward(self, x, return_att=False):
        x_size = x.size()

        #Encoder
        conv1 = self.conv1(x)
        conv2 = self.conv2t(self.conv2(conv1))
        conv3 = self.conv3t(self.conv3(conv2))
        conv4 = self.conv4t(self.conv4(conv3))
        conv5 = self.conv5(conv4)

        #Shape Stream
        ss = F.interpolate(self.d0(conv2),
                           x_size[2:],
                           mode='bilinear',
                           align_corners=True)
        ss = self.res1(ss)
        c3 = F.interpolate(self.c3(conv3),
                           x_size[2:],
                           mode='bilinear',
                           align_corners=True)
        ss = self.d1(ss)
        ss, g1 = self.gate1(ss, c3)
        ss = self.res2(ss)
        ss = self.d2(ss)
        c4 = F.interpolate(self.c4(conv4),
                           x_size[2:],
                           mode='bilinear',
                           align_corners=True)
        ss, g2 = self.gate2(ss, c4)
        ss = self.res3(ss)
        ss = self.d3(ss)
        c5 = F.interpolate(self.c5(conv5),
                           x_size[2:],
                           mode='bilinear',
                           align_corners=True)
        ss, g3 = self.gate3(ss, c5)
        ss = self.fuse(ss)
        ss = F.interpolate(ss, x_size[2:], mode='bilinear', align_corners=True)
        edge_out = self.sigmoid(ss)

        ### Canny Edge
        im_arr = np.mean(x.cpu().numpy(), axis=1).astype(np.uint8)
        canny = np.zeros((x_size[0], 1, x_size[2], x_size[3]))
        for i in range(x_size[0]):
            canny[i] = cv2.Canny(im_arr[i], 10, 100)
        canny = torch.from_numpy(canny).cuda().float()
        ### End Canny Edge

        cat = torch.cat([edge_out, canny], dim=1)
        acts = self.cw(cat)
        acts = self.sigmoid(acts)
        edge = self.expand(acts)

        #Decoder
        conv2 = F.interpolate(conv2,
                              scale_factor=2,
                              mode='bilinear',
                              align_corners=True)
        conv3 = F.interpolate(conv3,
                              scale_factor=2,
                              mode='bilinear',
                              align_corners=True)
        conv4 = F.interpolate(conv4,
                              scale_factor=2,
                              mode='bilinear',
                              align_corners=True)

        center = self.center(self.pool(conv5))
        dec5, att5 = self.dec5([center, conv5])
        dec4, att4 = self.dec4([dec5, conv4])
        dec3, att3 = self.dec3([dec4, conv3])
        dec2, att2 = self.dec2([dec3, conv2])
        dec1 = self.dec1(dec2)
        dec0 = self.dec0(torch.cat([dec1, edge], dim=1))

        x_out = self.final(dec0)

        att2 = F.interpolate(att2,
                             scale_factor=2,
                             mode='bilinear',
                             align_corners=True)
        att3 = F.interpolate(att3,
                             scale_factor=4,
                             mode='bilinear',
                             align_corners=True)
        att4 = F.interpolate(att4,
                             scale_factor=8,
                             mode='bilinear',
                             align_corners=True)
        att5 = F.interpolate(att5,
                             scale_factor=16,
                             mode='bilinear',
                             align_corners=True)

        if return_att:
            return x_out, edge_out, [att2, att3, att4, att5, g1, g2, g3]

        return x_out, edge_out
import numpy as np
import imutils
import easyocr
import pymongo

client = pymongo.MongoClient("mongodb+srv://archita:[email protected]/myFirstDatabase?retryWrites=true&w=majority")

db = client['number_plate_project']


img = cv2.imread('temp.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.imshow(cv2.cvtColor(gray, cv2.COLOR_BGR2RGB))

bfilter = cv2.bilateralFilter(gray, 11, 17, 17) #Noise reduction
edged = cv2.Canny(bfilter, 30, 200) #Edge detection
plt.imshow(cv2.cvtColor(edged, cv2.COLOR_BGR2RGB))

keypoints = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(keypoints)
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
location = None
for contour in contours:
    approx = cv2.approxPolyDP(contour, 10, True)
    if len(approx) == 4:
        location = approx
        break
#location
mask = np.zeros(gray.shape, np.uint8)
new_image = cv2.drawContours(mask, [location], 0,255, -1)
new_image = cv2.bitwise_and(img, img, mask=mask)
Ejemplo n.º 30
0
import cv2
import numpy as np
from matplotlib import pyplot as plt
import math

pdf_path = './pictures/ellispe.png'
img = cv2.imread(pdf_path)
# img=cv2.blur(img,(1,1))
imgray = cv2.Canny(img, 600, 100, 3)  # Canny边缘检测,参数可更改
# cv2.imshow("0",imgray)
ret, thresh = cv2.threshold(imgray, 127, 255, cv2.THRESH_BINARY)
image, contours = cv2.findContours(
    thresh, cv2.RETR_TREE,
    cv2.CHAIN_APPROX_SIMPLE)  # contours为轮廓集,可以计算轮廓的长度、面积等
for cnt in contours:
    if len(cnt) > 50:
        S1 = cv2.contourArea(cnt)
        ell = cv2.fitEllipse(cnt)
        S2 = math.pi * ell[1][0] * ell[1][1]
        if (S1 / S2) > 0.2:  # 面积比例,可以更改,根据数据集。。。
            img = cv2.ellipse(img, ell, (0, 255, 0), 2)
            print(
                str(S1) + "    " + str(S2) + "   " + str(ell[0][0]) + "   " +
                str(ell[0][1]))
cv2.imshow("0", img)
cv2.waitKey(0)