Ejemplo n.º 1
0
    def disp(self):
        pass
        imgL = cv2.imread('Yeuna9x.png', 0)
        imgR = cv2.imread('SuXT483.png', 0)

        stereo = cv2.StereoBM(1, 16, 15)
        disparity = stereo.compute(imgL, imgR)
def stereo_disparity(Number_of_Disparities, Window_Size):
    stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,
                          ndisparities=Number_of_Disparities,
                          SADWindowSize=Window_Size)
    ##http://docs.opencv.org/2.4.1/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereobm-stereobm
    disparity = stereo.compute(imgL, imgR)
    return disparity
Ejemplo n.º 3
0
    def __init__(self, params=default_params):
        self.params = params

        # Initilize stereo block matching
        self.bm = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET, 128, 9)

        self.process = self.compute
Ejemplo n.º 4
0
def doStereo(imgL, imgR, params):
    """
    Parameters tuned for q50 car images.

    Parameters:
    minDisparity - Minimum possible disparity value. Normally, it is zero but sometimes rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
    numDisparities - Maximum disparity minus minimum disparity. The value is always greater than zero. In the current implementation, this parameter must be divisible by 16.
    SADWindowSize - Matched block size. It must be an odd number >=1. Normally, it should be somewhere in the 3..11 range.
    P1 - The first parameter controlling the disparity smoothness. See below.
    P2 - The second parameter controlling the disparity smoothness. The larger the values are, the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor pixels. The algorithm requires P2 > P1. See stereo_match.cpp sample where some reasonably good P1 and P2 values are shown (like 8*number_of_image_channels*SADWindowSize*SADWindowSize and 32*number_of_image_channels*SADWindowSize*SADWindowSize, respectively).
    disp12MaxDiff - Maximum allowed difference (in integer pixel units) in the left-right disparity check. Set it to a non-positive value to disable the check.
    preFilterCap - Truncation value for the prefiltered image pixels. The algorithm first computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. The result values are passed to the Birchfield-Tomasi pixel cost function.
    uniquenessRatio - Margin in percentage by which the best (minimum) computed cost function value should "win" the second best value to consider the found match correct. Normally, a value within the 5-15 range is good enough.
    speckleWindowSize - Maximum size of smooth disparity regions to consider their noise speckles and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the 50-200 range.
    speckleRange - Maximum disparity variation within each connected component. If you do speckle filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. Normally, 1 or 2 is good enough.
    fullDP - Set it to true to run the full-scale two-pass dynamic programming algorithm. It will consume O(W*H*numDisparities) bytes, which is large for 640x480 stereo and huge for HD-size pictures. By default, it is set to false.
    """
    imsize = (1280, 960)
    (R1, R2, P1, P2, Q, size1, size2, map1x, map1y, map2x,
     map2y) = computeStereoRectify(params)

    imgRectL = cv2.remap(imgL,
                         map1x,
                         map1y,
                         interpolation=cv.CV_INTER_LINEAR,
                         borderMode=cv2.BORDER_CONSTANT,
                         borderValue=(0, 0, 0, 0))

    imgRectR = cv2.remap(imgR,
                         map2x,
                         map2y,
                         interpolation=cv.CV_INTER_LINEAR,
                         borderMode=cv2.BORDER_CONSTANT,
                         borderValue=(0, 0, 0, 0))
    """
    window_size = 1
    min_disp = 0
    num_disp = 64
    stereo = cv2.StereoSGBM(minDisparity = min_disp,
        numDisparities = num_disp,
        SADWindowSize = window_size,
        uniquenessRatio = 30,
        speckleWindowSize = 80,
        speckleRange = 1,
        disp12MaxDiff = 1,
        P1 = 8*3*window_size**2,
        P2 = 128*3*window_size**2,
        fullDP = True
    )
    """
    imgRectL = cv2.cvtColor(imgRectL, cv2.COLOR_RGB2GRAY)
    imgRectR = cv2.cvtColor(imgRectR, cv2.COLOR_RGB2GRAY)
    stereo = cv2.StereoBM(preset=cv.CV_STEREO_BM_NARROW, SADWindowSize=35)
    print 'computing stereo...'
    disp = stereo.compute(imgRectL, imgRectR).astype(np.float32) / 16.0
    return (disp, Q, R1, R2)
Ejemplo n.º 5
0
 def __init__(self, is_sgbm=False):
     # fixed parameters for current camera
     # StereoSGBM([minDisparity, numDisparities, SADWindowSize[, P1[, P2[, disp12MaxDiff[, preFilterCap[, uniquenessRatio[, speckleWindowSize[, speckleRange[, fullDP]]]]]]]]]) -> <StereoSGBM object>
     if is_sgbm:
         self.bm = cv2.StereoSGBM(0, 128, 15, 200, 400, 0, 9, 15, 100, 4,
                                  False)
     else:
         self.bm = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET, 128,
                                45)  #preset, ndisp, SADWindowSize
     self.is_sgbm = is_sgbm
Ejemplo n.º 6
0
def stereobm(config, left_image, right_image):
    bm = cv2.StereoBM(config.stereobm.preset_id, config.stereobm.ndisparity,
                      config.stereobm.sad_window_size)

    left_image = cv2.cvtColor(left_image, cv2.COLOR_RGB2GRAY)
    right_image = cv2.cvtColor(right_image, cv2.COLOR_RGB2GRAY)

    disparity = bm.compute(left_image, right_image, disptype=cv2.CV_16S)
    disparity *= 255 / (disparity.min() - disparity.max())
    disparity = disparity.astype(numpy.uint8)

    return disparity
Ejemplo n.º 7
0
def cl_op7_hist_time(BS,D,H,W,M=4):
	times = []
        left,right, out =create_arrays(H,W)
        for i in xrange(M):
                #t=hist_op_1_time(img_buf,bins_buf, N)
                start=time.time()
		stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,ndisparities=D, SADWindowSize=BS)
        	##http://docs.opencv.org/2.4.1/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereobm-stereobm
        	#out = stereo.compute(left,right)
                t=time.time()-start
		times.append(t)
        #print 'opencl time:  ', np.average(times)
        return np.average(times)
Ejemplo n.º 8
0
def get_disparity(imL, imR):
	import numpy as np
	import cv2
	from matplotlib import pyplot as plt

	# imgL = cv2.imread('Yeuna9x.png',0)
	# imgR = cv2.imread('SuXT483.png',0)

	stereo = cv2.StereoBM(1, 16, 15)
	disparity = stereo.compute(imgL, imgR)

	plt.imshow(disparity,'gray')
	plt.show()
	return disparity
Ejemplo n.º 9
0
    def pureBlockMatch(self, SADWindowSize=5):
        stereo = cv2.StereoBM(preset=cv2.cv.CV_STEREO_BM_BASIC,
                              ndisparities=self.ndisparities,
                              SADWindowSize=SADWindowSize)
        """
        presetspecifies the whole set of algorithm parameters, one of:

        BASIC_PRESET - parameters suitable for general cameras
        FISH_EYE_PRESET - parameters suitable for wide-angle cameras
        NARROW_PRESET - parameters suitable for narrow-angle cameras
        """

        disparity = stereo.compute(self.grayL, self.grayR)
        return disparity
Ejemplo n.º 10
0
    def compute_depth(self, imgR, imgL, ndisparities, SADWindowSize):
        # Convert to gray scale
        imgR_ = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)
        imgL_ = cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY)

        # Compute stereo disparity
        stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET, ndisparities, SADWindowSize)
        D = stereo.compute(imgL_, imgR_).astype(np.float)
        depth_map = ( D - np.min(D) ) / ( np.max(D) - np.min(D) ) * 255

        for ch in xrange(3):
            imgL[:, :, ch] = depth_map.astype(np.uint8)

        return imgL
Ejemplo n.º 11
0
def getStereoPairPointCloud(imgL,
                            imgR,
                            calibration_data='../calibration_data/camera_left2'
                            ):
    stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET, ndisparities=16)
    disparity = stereo.compute(imgL, imgR)

    cF = open(calibration_data, 'rb')
    dL = pickle.load(cF)

    fx = dL['K'][0]
    fy = dL['K'][4]
    cx = dL['K'][2]
    cy = dL['K'][5]
    Tx = dL['P'][3]
    Ty = dL['P'][7]
    T = -Tx / fx

    Q = np.zeros((4, 4))
    Q[0, 0] = 1
    Q[0, 3] = -cx
    Q[1, 3] = -cy
    Q[1, 1] = 1
    Q[2, 3] = np.sqrt(fx**2 + fy**2)
    #Q[3,3] = 1
    Q[3, 2] = -1 / T

    dispindices = np.where(disparity > 0)
    N = len(dispindices[0])
    sparseline = np.zeros((N, 3))

    for i in range(0, N):
        sparseline[i, :] = np.array((dispindices[0][i], dispindices[1][i],
                                     disparity[dispindices[0][i],
                                               dispindices[1][i]]))

    sparseline[:, 2] = np.mean(sparseline[:, 2])

    print sparseline[:, 2]
    print np.mean(sparseline[:, 2])

    plt.figure()
    plt.imshow(disparity, cmap='gray')
    plt.show()

    out = cv2.perspectiveTransform(sparseline[None, :, :], Q)
    return -np.squeeze(out)
Ejemplo n.º 12
0
    def __init__(self):
        self.right_image = None
        self.left_image = None
        self.rcounter = 0
        self.lcounter = 0
        self.info = {'l': None, 'r': None}
        self.bridge = cv_bridge.CvBridge()

        self.right_patches = None
        self.left_patches = None

        #========SUBSCRIBERS========#
        # image subscribers
        rospy.init_node('image_saver')
        rospy.Subscriber("/endoscope/left/image_rect_color",
                         Image,
                         self.left_image_callback,
                         queue_size=1)
        rospy.Subscriber("/endoscope/right/image_rect_color",
                         Image,
                         self.right_image_callback,
                         queue_size=1)
        # info subscribers
        rospy.Subscriber("/endoscope/left/camera_info", CameraInfo,
                         self.left_info_callback)
        rospy.Subscriber("/endoscope/right/camera_info", CameraInfo,
                         self.right_info_callback)
        rospy.spin()

        print("After rospy.spin() shut down")
        print("\tleft_patches.shape = {}".format(self.left_patches.shape))
        print("\tright_patches.shape = {}".format(self.right_patches.shape))
        print("right_image.shape = {}, left_image.shape = {}".format(
            self.right_image.shape, self.left_image.shape))

        #======= SAVE IMAGES and MEASURE DISPARITY =======#
        cv2.imwrite("color_left.jpg", self.left_image)
        cv2.imwrite("color_right.jpg", self.right_image)
        stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,
                              ndisparities=16,
                              SADWindowSize=15)
        img1 = cv2.cvtColor(self.left_image, cv2.COLOR_BGR2GRAY)
        img2 = cv2.cvtColor(self.right_image, cv2.COLOR_BGR2GRAY)
        disparity = stereo.compute(img1, img2)
        cv2.imwrite("disparity.jpg", disparity)
Ejemplo n.º 13
0
def main():
    # 画像取得
    gray_l = cv2.imread("left.png", 0)
    gray_r = cv2.imread("right.png", 0)
    # BM法でステレオ対応点探索
    stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,
                          ndisparities=32,
                          SADWindowSize=21)
    disp = stereo.compute(gray_l, gray_r)  # 視差を計算
    # 視差データを8bitデータに変換(imshowで表示させるため)
    disp = cv2.normalize(disp,
                         alpha=0,
                         beta=255,
                         norm_type=cv2.NORM_MINMAX,
                         dtype=cv2.CV_8U)
    cv2.imshow("disp", disp)  # 視差画像の表示
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 14
0
    def __init__(self, bm_type='bm'):
        self.bm_type = bm_type
        unitDisparity = 15
        numberOfDisaprities = unitDisparity * 16

        if bm_type == 'bm':
            bm = cv2.StereoBM().create()
            # bm.setROI1(validPixROI1)
            # bm.setROI2(validPixROI2)
            bm.setBlockSize(21)
            bm.setPreFilterCap(13)
            bm.setMinDisparity(0)
            bm.setNumDisparities(numberOfDisaprities)
            bm.setTextureThreshold(20)
            bm.setUniquenessRatio(10)
            bm.setSpeckleWindowSize(19)
            bm.setSpeckleRange(32)
            bm.setDisp12MaxDiff(5)
            self.bm = bm

        elif bm_type == 'sgbm':
            bm = cv2.StereoSGBM().create()
            SADWindowSize = 11
            mindisparity = 0
            ndisparities = 64
            bm.setMinDisparity(0)
            bm.setNumDisparities(64)
            bm.setBlockSize(SADWindowSize)
            channel = 1
            P1 = 8 * channel * SADWindowSize * SADWindowSize
            P2 = 32 * channel * SADWindowSize * SADWindowSize
            bm.setP1(P1)
            bm.setP2(P2)
            bm.setPreFilterCap(15)
            bm.setUniquenessRatio(10)
            bm.setSpeckleRange(2)
            bm.setSpeckleWindowSize(100)
            bm.setDisp12MaxDiff(cv2.STEREO_SGBM_MODE_SGBM)
            self.bm = bm
        else:
            raise AssertionError('bm_type must be select in sgbm and bm')
Ejemplo n.º 15
0
 def __init__(self,
              trajectoire,
              depth_max=10.,
              height_max=2.,
              resolution=(1000, 1000),
              cell_size=0.1,
              origin=(512, 512),
              downsample=True,
              dense_decim=4,
              visu_scale=5):
     '''
         Constructeur de la carte d'élévation :
         depth_max  : profondeur maximum utilisé dans la carte
         height_max : hauteur maximum des imformation ajouté à la carte
         resolution : taille (x,y) en pixels de la carte
         cell_size  : taille en mètres de la cellule (pixel), la taille réele
                      cartographié est alors cell_size*resolution
         origin     : position de l'origine dans la carte (position en pixel)
         downsample : défini si la disparite est calculé sur une image a plus
                      basse résolution
         dense_decim : decimation temporel des carte stereo inséré
     '''
     self.height_max = height_max
     self.height_min = 0.2
     self.traj = trajectoire
     self.depth_max = depth_max
     self.origin = origin
     self.carte = np.zeros(resolution)
     self.votes = np.zeros(resolution)
     self.cell_size = cell_size
     self.current_time = -1
     self.ref_plane = None
     self.downsample = downsample
     self.decimation_dense = dense_decim
     if self.downsample:
         disp_lvl = 32
     else:
         disp_lvl = 64
     self.stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET, disp_lvl, 9)
     #self.stereo = cv2.StereoSGBM(0,disp_lvl, 7, P1 = 10, P2 = 500, speckleWindowSize = 51, speckleRange= 1 )
     self.visu_scale = visu_scale
Ejemplo n.º 16
0
    def callback(self, image_1, image_2):
        try:
            cv_image_1 = self.bridge.imgmsg_to_cv2(image_1, "bgr8")
            cv_image_2 = self.bridge.imgmsg_to_cv2(image_2, "bgr8")

        except CvBridgeError as e:
            print(e)

        cv2.imshow('left_hand_camera 1', cv_image_1)
        cv2.imshow('right_hand_camera 2', cv_image_2)
        cv2.waitKey(1)

        stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,
                              ndisparities=16,
                              SADWindowSize=15)
        gray_1 = cv2.cvtColor(cv_image_1, cv2.COLOR_BGR2GRAY)
        gray_2 = cv2.cvtColor(cv_image_2, cv2.COLOR_BGR2GRAY)
        disparity = stereo.compute(gray_1, gray_2)

        plt.imshow(disparity, 'gray')
        plt.show()
Ejemplo n.º 17
0
def testStereoAlgo(I0, I1, winSize, numDisp):
    '''
        Fonction calculant et affichant la carte de disparité avec 4 algorighmes:
        BM : algorithme de bloque matching stereo simple
        SGBM1 : algorithme sgbm avec une faible régularisaion
        SGBM2 : algorithme sgbm avec une régularisation moyenne
        SGMB3 : algorithme sgbm avec une forte régularisation

        winSize = taille de la fenêtre de corrélation
        numDisp = nombre d'hypothèse de disparités
    '''
    print(numDisp)
    bm = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET, numDisp, winSize)
    disp1 = bm.compute(I0, I1).astype(np.float32) / 16.
    sgbm = cv2.StereoSGBM(0, numDisp, winSize, P1=0, P2=5)
    disp2 = sgbm.compute(I0, I1).astype(np.float32) / 16.
    sgbm2 = cv2.StereoSGBM(0,
                           numDisp,
                           winSize,
                           P1=10,
                           P2=500,
                           speckleWindowSize=51,
                           speckleRange=1)
    disp3 = sgbm2.compute(I0, I1).astype(np.float32) / 16.
    sgbm3 = cv2.StereoSGBM(0,
                           numDisp,
                           winSize,
                           P1=5000,
                           P2=10000,
                           speckleWindowSize=51,
                           speckleRange=1)
    disp4 = sgbm3.compute(I0, I1).astype(np.float32) / 16.
    figure()
    disp = np.concatenate(
        [np.concatenate([disp1, disp3]),
         np.concatenate([disp2, disp4])],
        axis=1)
    imshow(disp, vmin=0, vmax=numDisp)
    colorbar()
    title('resultat [[BM ,SGBM1],[SGBM 2, SGBM3]]')
Ejemplo n.º 18
0
def estimateDisparity(image_left,image_right,method='SGBM'):
    if method=='SGBM':
        import cv2
        
        disparityrange=[0,15]
        
        ndisparities=int(np.ceil(disparityrange[1]-disparityrange[0])	)
        ndisparities=16*int(np.ceil(float(ndisparities)/16))
        minDisparity=int(np.floor(disparityrange[0]))
        #stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,ndisparities=ndisparities, SADWindowSize=15)
        #stereo = cv2.StereoSGBM(minDisparity=mindisparity,numDisparities=ndisparities, SADWindowSize=15,P1=10000,P2=0)
        stereo = cv2.StereoSGBM(minDisparity=minDisparity,numDisparities=ndisparities, SADWindowSize=3,P1=30,P2=30)
        
        right_disparity = stereo.compute(image_left[:,:,0],image_right[:,:,0])# does not work in color...
        right_disparity=right_disparity/16.
    elif method=='BM':
  
    
    
        stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,ndisparities=ndisparities,  SADWindowSize=5)
        right_disparity = stereo.compute(image_left[:,:,0],image_right[:,:,0],disptype=cv2.CV_32F)# does not work in color...
    return right_disparity
Ejemplo n.º 19
0
def find_depth(img1, img2):
    """
    Goal:+
        calculated disparity map
        From disparity map estimate depth of image objects

    Inputs:
        img1 -> file path to left image
        img2 -> file path to right image

    Returns:
        estimated depth map 
    """

    left = cv2.imread(img1, 0)
    right = cv2.imread(img2, 0)

    stereo = cv2.StereoBM(preset = 0, ndisparities=208, SADWindowSize = 5)#minDisparity=0, numDisparities=192, SADWindowSize=7)
    disparity = stereo.compute(left,right)

    cv2.imshow('right',right)
    cv2.imshow('disparity', disparity)
    cv2.waitKey(0)
Ejemplo n.º 20
0
def main():
    (map1x, map1y, map2x, map2y) = calibration()

    cam = cv2.VideoCapture(0)  # левая
    cam0 = cv2.VideoCapture(2)  # правая
    n = 0
    while (1):
        ret_val, frame = cam.read()
        ret_val0, frame0 = cam0.read()
        img_l = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        img_r = cv2.cvtColor(frame0, cv2.COLOR_BGR2GRAY)
        height, width, depth = frame.shape
        imgU1 = np.zeros((height, width, 3), np.uint8)
        imgU2 = np.zeros((height, width, 3), np.uint8)
        imgU1 = cv2.remap(img_l, map1x, map1y, cv2.INTER_LINEAR, imgU1,
                          cv2.BORDER_CONSTANT, 0)
        imgU2 = cv2.remap(img_r, map2x, map2y, cv2.INTER_LINEAR, imgU2,
                          cv2.BORDER_CONSTANT, 0)

        stereo = cv2.StereoBM(1, 0, 11)
        disparity = stereo.compute(imgU2, imgU1, cv2.CV_32F)
        # cv2.imshow('disparity', disparity)
        cv2.imshow('right_U', imgU1)
        cv2.imshow('left_U', imgU2)
        cv2.imshow('frame', frame)
        cv2.imshow('frame0', frame0)

        plt.imshow(disparity, 'gray')
        plt.show()
        k = cv2.waitKey(30) & 0xff

        # рендринг материала для калибровки
        if k == 10:
            n = saveImg(n, frame, frame0)
        if k == 27:
            break
Ejemplo n.º 21
0
    def compute_disparity(self, left_image, right_image,
                          ndisparities=16, SADWindowSize=25):
        """Compute the disparity image, given the left and right image."""

        stereo = cv2.StereoBM(
            cv2.STEREO_BM_BASIC_PRESET,
            ndisparities=ndisparities,
            SADWindowSize=SADWindowSize)

        self._left_image = left_image
        # Convert the given images to grayscale
        gray_left = cv2.cvtColor(left_image,
                                 cv2.COLOR_BGR2GRAY)

        self._right_image = right_image
        gray_right = cv2.cvtColor(right_image,
                                  cv2.COLOR_BGR2GRAY)

        # Compute stereo disparity image
        disparity_map = (
            stereo.compute(gray_left, gray_right).astype(np.float32) - 32
        ) / 25.0

        self._disparity_map = disparity_map
Ejemplo n.º 22
0
try:
    cap = cv2.VideoCapture(1)
    logging.debug("SUCCESFULLY ACTIVATE WEBCAM")
except:
    logging.error("ERROR CANNOT ACTIVATE WEBCAM")
    exit(0)

with open("calibration.json", "r") as fp:
    logging.debug("READ CALIBRATION JSON")
    calibration = json.load(fp)
    mtx = np.array(calibration["mtx"])
    dist = np.array(calibration["dist"])
    newcameramtx = np.array(calibration["newcameramtx"])

logging.debug("WIDTH = %s", str(cap.get(cv2.CAP_PROP_FRAME_WIDTH)))
logging.debug("HEIGHT = %s", str(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fps = cap.get(cv2.CAP_PROP_FPS)
delta_time = 100 / fps
logging.debug("START VIDEO CAPTURE WITH %d MILLISECONDS INTERVAL",
              int(delta_time))

stereo = cv2.StereoBM()

logging.debug("START START CAPTURING")
wait = -1
while cap.isOpened() and wait == -1:

    frame = read_video(cap, mtx, dist, newcameramtx, stereo)
    wait = cv2.waitKey(int(delta_time))

logging.debug("END CAPTURING")
import cv2
from matplotlib import pyplot as plt

imgL = cv2.imread('left_1.ppm',0)
imgR = cv2.imread('right_1.ppm',0)
# stereo = cv2.createStereoBM(numDisparities=16, blockSize=15)
stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,ndisparities=16, SADWindowSize=15)
disparity = stereo.compute(imgL,imgR)
plt.imshow(disparity,'gray')
plt.show()
Ejemplo n.º 24
0
                    dest='right_path',
                    default='right_image_rect/',
                    help='Right camera subpath')

args = parser.parse_args()

root_folder = args.root_folder[0]
out_folder = join(root_folder, 'depth/')

left_files = glob.glob(join(root_folder, args.left_path, '*.jpg'))
left_files.sort()
#[rename(f,join(root_folder, args.left_path,"frame{:03}.jpg".format(i))) for f,i in zip(left_files, range(len(left_files)))]
#right_files = glob.glob(join(root_folder, args.left_path, '*.jpg'))
#right_files.sort()
#[rename(f,join(root_folder, args.right_path,"frame{:03}.jpg".format(i))) for f,i in zip(right_files, range(len(right_files)))]
#print left_files
if not isdir(out_folder):
    makedirs(out_folder)

stereo = cv2.StereoBM(1, 16, 15)
for left_path in left_files:
    right_path = join(root_folder, args.right_path, basename(left_path))
    depth_path = join(out_folder, basename(left_path))
    print right_path
    imgL = cv2.imread(left_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
    imgR = cv2.imread(right_path, cv2.CV_LOAD_IMAGE_GRAYSCALE)
    print imgL.shape
    print imgR.shape
    depth_map = stereo.compute(imgL, imgR)

    cv2.imwrite(depth_path, depth_map)
Ejemplo n.º 25
0
    #Adds the trackbar to disparity frame
    ndi = cv2.getTrackbarPos(dr, disp)
    sws = cv2.getTrackbarPos(bs, disp)

    if sws % 2 == 0:
        sws += 1

    if sws < startWD:
        sws = 5

    if not ndi % 16 == 0:
        ndi = (ndi / 16) * 16

    #Determine the stereo block matching algorithm for the variables given
    stereo = cv2.StereoBM(0, ndi, sws)

    #Prints out the value of the variables
    print "DisparityRange:", ndi
    print "BlockSize:", sws

    #Computes the disparity from the two video feeds
    disparity = stereo.compute(gray_left, gray_right)

    #Disparity needs to be converted to match the format of the camera video feeds
    cvuint8 = cv2.convertScaleAbs(disparity)

    #Displays the disparity map
    cv2.imshow('disparity', cvuint8)

    f = 0.4  #focal length
Ejemplo n.º 26
0
capL = cv2.VideoCapture(int(sys.argv[1]))
capR = cv2.VideoCapture(int(sys.argv[2]))
imgL = np.zeros((480, 640, 3), np.uint8)
imgR = np.zeros((480, 640, 3), np.uint8)
while True:
    capL.read(imgL)
    capR.read(imgR)
    imgGrayL = cv2.GaussianBlur(
        cv2.equalizeHist(
            cv2.cvtColor(imgL, cv2.COLOR_BGR2GRAY)),
        (5, 5), 0)
    imgGrayR = cv2.GaussianBlur(
        cv2.equalizeHist(
            cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)),
        (5, 5), 0)
    cv2.imshow("image left gray", imgGrayL)
    cv2.imshow("image right gray", imgGrayR)
    k = cv2.waitKey(33)
    if k == ord('d'):
        stereo = cv2.StereoBM(
            cv2.STEREO_BM_BASIC_PRESET,
            ndisparities=int(sys.argv[3]),
            SADWindowSize=int(sys.argv[4]))
        disparity = stereo.compute(
            imgGrayL, imgGrayR)
        plt.imshow(disparity, "gray")
        plt.show()
    else:
        if k == ord('q'):
            break
import cv2
from matplotlib import pyplot as plt

imgL = cv2.imread('imgL_0.png')
imgR = cv2.imread('imgR_0.png')

cv2.namedWindow('imgL', cv2.WINDOW_NORMAL)
cv2.namedWindow('imgR', cv2.WINDOW_NORMAL)
cv2.namedWindow('disparity', cv2.WINDOW_NORMAL)

while (cv2.waitKey(1) & 0xFF != ord('q')):
    grayImgL = cv2.imread('imgL_0.png', 0)
    grayImgR = cv2.imread('imgR_0.png', 0)

    # disparity settings
    numDisparites = 16
    SADwindowsize = 21

    stereo = cv2.StereoBM(0,
                          ndisparities=numDisparites,
                          SADWindowSize=SADwindowsize)

    cv2.imshow("Left image", imgL)
    cv2.imshow("Right image", imgR)
    k = cv2.waitKey(0)  #timing in ms, keyboard binding function
    if k == 27:  #wait for esc key interrupt
        cv2.destroyAllWindows()  #destroy window and escape from program

    disparity = stereo.compute(grayImgL, grayImgR)
    plt.imshow(disparity, 'gray')
    plt.show()
Ejemplo n.º 28
0
            #left = np.uint8(left)
            #right = np.uint8(right)

            window_size = 3
            min_disp = 16
            num_disp = 112 - min_disp
            stereo = cv2.StereoSGBM_create(minDisparity=min_disp,
                                           numDisparities=num_disp,
                                           blockSize=16,
                                           P1=8 * 3 * window_size**2,
                                           P2=32 * 3 * window_size**2,
                                           disp12MaxDiff=1,
                                           uniquenessRatio=10,
                                           speckleWindowSize=100,
                                           speckleRange=32)
            stereo = cv2.StereoBM(numDisparities=16, blockSize=15)

            print('computing disparity...')
            dis = stereo.compute(left, right).astype(np.float32) / 16.0
            #disparity_image = np.uint8(right)
            disparity_image = np.uint8(dis)
            print('frame {} computed'.format(counter))
            #display.display([left, disparity_image])
            #cv2.imwrite('/home/jetson/Videos/disparity/testimage{}.png'.format(counter), disparity_image)
            # out.write(disparity_image)
            # print(disparity)
            #plt.imshow(dis, 'gray')
            # plt.show()
    else:
        _, left = left_cam.read()
    counter += 1
Ejemplo n.º 29
0
 def _replace_bm(self):
     """Replace ``_block_matcher`` with current values."""
     self._block_matcher = cv2.StereoBM(preset=self._bm_preset,
                                        ndisparities=self._search_range,
                                        SADWindowSize=self._window_size)
Ejemplo n.º 30
0
date = '2011_09_29'
drive = '0071'

# Optionally, specify the frame range to load
frame_range = 0

# Load the data
dataset = pykitti.raw(basedir, date, drive, frame_range)

# Load image data
# dataset.load_gray(format='cv2')  # Loads images as uint8 grayscale
dataset.load_rgb(format='cv2')  # Loads images as uint8 with BGR ordering

# Do some stereo processing
stereo = cv2.StereoBM(cv2.STEREO_BM_BASIC_PRESET,
                      numDisparities=64,
                      blockSize=15)
disp_gray = stereo.compute(dataset.gray[0].left, dataset.gray[0].right)
disp_rgb = stereo.compute(
    cv2.cvtColor(dataset.rgb[0].left, cv2.COLOR_BGR2GRAY),
    cv2.cvtColor(dataset.rgb[0].right, cv2.COLOR_BGR2GRAY))

# Display some data
f, ax = plt.subplots(2, 2, figsize=(15, 5))
ax[0, 0].imshow(dataset.gray[0].left, cmap='gray')
ax[0, 0].set_title('Left Gray Image (cam0)')

ax[0, 1].imshow(disp_gray, cmap='viridis')
ax[0, 1].set_title('Gray Stereo Disparity')

ax[1, 0].imshow(cv2.cvtColor(dataset.rgb[0].left, cv2.COLOR_BGR2RGB))